Óbudai University Donát Bánki Faculty of Mechanical and Safety Engineering							Institute of Mechatronics and Vehicle Engineering		
Course nam	e and Neptun Semester of th	-code: Mode	ling an	d Sim				Credits: 3	
Faculties in v	which the subj	ect is taught:	MSc in	Mech	atronics				
Supervised by: Dr. Frigyik Béla András Lecturers: Dr. Frigyik Béla András									
Prerequisites conditions: (Neptun Codes) BMXAME1MNE									
Lessons per v	week:	Theory: 2	Practic	e (in A	Auditorium): 0	Lab: 1	Consultation:	
Exam type (s,v,f):		oral exam							
The Syllabus									
	to help them			e in pra	actice and			echatronics. They will ate the creation of these	
Schedule									
Weeks	Topics								
1.	Introduction to modeling and simulation. Why do we simulate? Simulation environment.								
2.	Goal of modeling and simulation: when do we need a model and how to get one								
3.	Required tools: Review of Linear Algebra, Analysis and numerical tools, and introduction to stochastic methods								
4.	Traffic and highways model: Macroscopic simulation I.								
5.	Traffic and highways model: Macroscopic simulation II.								
6.	Traffic and highways model: Microscopic simulation I.								
7.	Traffic and highways model: Microscopic simulation II.								
8.	Traffic and highways model: Stochastic approach I.								
9.	National holiday								
10.	Traffic and highways model: Stochastic approach II.								
11.	Population dynamics: Role of dynamical systems in modeling								
12.	Control Engineering: Basics and example								
13.	Fuzzy set theory and rule-based fuzzy system								
14.	Chaos theory: Introduction and a simple model								
				Requ	irements				
Weeks		Tests							
		<u> </u>	The	evalu	ation crite	rias –			

Classes and tests will be held in person. Any change due to the pandemic situation will be announced in the Moodle course.

All main areas of the course are evaluated by test papers. The course is to be considered successfully completed if and only if both tests are written with mark minimum 2 (40%), as a prerequisite for obtaining a **signature**.

Based on the Study Regulations III.6.(4), the student may receive an offered grade if they have written both tests successfully.

All matters which are not covered in this document, the Study and Examination Rules and the provisions of the Study Regulations, valid at Óbuda University, prevails.

The semester closing method (method of examination: written, oral, testing, etc.).

Oral exam: Weekly presentations

Literature:

- Bungartz et al. Modeling and Simulation. eBook. ISBN 978-3-642-39524-6.
- Mathworks Inc. Matlab 2020a

Quality Assurance: Student questionnaire at the end of the semester