ÓBUDAI EGYETEM Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi- és Gyártástechnológiai Intézet

Folyásgörbe meghatározás módszerei

Oktatási segédlet.

Összeállította: dr. Horváth László főiskolai docens

TARTALOMJEGYZÉK

Oldal

1. Az alakítási szilárdság és a folyásgörbe fogalma, mérési módszerek áttekintése	3
2. Folyásgörbe meghatározás hengeres próbatest zömítővizsgálatával	7
2.1 A márás almálati alaniai	7

<i>∠</i> .1.	A meres ennereu alapjai	/
2.2.	A mérés végrehajtása, a mérési eredmények kiértékelése	10
2.3.	Az alakítási szilárdságot befolyásoló paraméterek értékének meghatározása	12
	2.3.1. Az összehasonlító alakváltozás-sebesség a mérés során	12
	2.3.2. A próbatest hőmérséklete a mérés során	14
	215121 II producest inclusionate a meres softai	

(Extranolációs médezen)	
(Extrapolacios mouszer)	6
3.1. A mérés elméleti alapjai1	6
3.2. A mérés előkészítése, végrehajtása, a mérési eredmények értékelése 1	7

4. Folyásgörbe meghatározás lapos próbatest zömítővizsgálatával	
(Watts - Ford módszer)	
4.1. A mérés elméleti alapjai	
4.2. A nyomóbetétek kiválasztása	
4.3. A mérési eredmények értékelése	

5. Folyásgörbe-egyenletek paramétereinek meghatározása	. 29
5.1. Az egyszerű hatványfüggvénnyel jellemzett kétparaméteres folyásgörbe-egyenlet	
paramétereinek meghatározása	. 30
5.2. Négyparaméteres folyásgörbe-egyenlet paramétereinek meghatározása	. 33
6. Kidolgozott feladatok	. 38

7. Mellékletek

1. Az alakítási szilárdság és a folyásgörbe fogalma, mérési módszerek áttekintése

A fémek képlékeny hidegalakítása során, *egytengelyű feszültségállapotban, az alakváltozás hatására növekvő folyáshatárt* –megkülönböztetésül az anyagvizsgálatban a folyás megindulásához tartozó ($R_{p0,2}$) statikus folyáshatártól– **alakítási szilárdság**nak nevezzük és többnyire k_f–el jelöljük.

Az alakítási szilárdság tehát az alakváltozás hatására felkeményedő fém mindenkori folyáshatára, egytengelyű feszültségállapotban.

Az alakítatlan fém alakítási szilárdsága megegyezik a statikus folyáshatárral ($k_{fo} = R_{p0,2}$).

Az alakítási szilárdság –az alakítás mértékén kívül– egyéb paramétereknek is függvénye, melyet az alábbi elvi összefüggés szemléltet:

Α,

 $\lambda_{\ddot{0}}$,

T [°C],

$$\mathbf{k}_{f} = f\left(\mathbf{A}, \lambda_{\ddot{\mathbf{o}}}, \mathsf{T}\left[^{\circ}\mathbf{C}\right], \dot{\lambda}_{\ddot{\mathbf{o}}}\left[\frac{1}{s}\right]\right)$$
 1.1

amelyben az alakított darab

- anyagminőségét
- összehasonlító alakváltozását
- hőmérsékletét
- összehasonlító alakváltozás-sebességét λ_{z} [1/s] jelöli.

Adott anyagminőség alakítási szilárdságát a:

$$\mathbf{k}_{f} = \mathbf{f}\left(\lambda_{\ddot{\mathbf{o}}}, \mathbf{T}\left[^{\circ}\mathbf{C}\right], \dot{\lambda}_{\ddot{\mathbf{o}}}\left[\frac{1}{s}\right]\right)$$
 1.2

háromváltozós függvény írja le.

A $\lambda_{\ddot{o}}$ összehasonlító alakváltozás-sebességet, mint független változót állandó értéken tartva, olyan kétváltozós függvénykapcsolathoz jutunk, amely egy felülettel ábrázolható. A *folyási felület* elvi ábráját az 1.1 ábra szemlélteti.

1.1 ábra

Bizonyos alakítási körülmények között (például: szobahőmérsékleten, kis $(\dot{\lambda}_{\ddot{o}} \leq 1[1/s])$ összehasonlító alakváltozás-sebességgel végezve az alakítást) az alakítási szilárdság csak az összehasonlító alakváltozás függvényeként kezelhető.

A folyásgörbe ekkor a

$$\mathbf{k}_{\mathbf{f}} = \mathbf{f}\left(\boldsymbol{\lambda}_{\ddot{\mathbf{O}}}\right)$$
 1.3

függvénykapcsolatot jelenti (az alakítási szilárdság változását az összehasonlító alakváltozás függvényében), miközben a másik két paraméter értéke állandó.

Az előbbiekből következik, hogy az 1.3 összefüggéssel megadott folyásgörbe csak akkor tekinthető ismertnek, ha mellette megadásra kerül, hogy milyen hőmérsékleten és milyen összehasonlító alakváltozás-sebességgel történt a meghatározása.

Néhány anyagminőség szobahőmérsékleten (T = 20 °C), és $\lambda_{\ddot{o}} = 0,1 [1 / s]$ összehasonlító alakváltozás-sebességgel meghatározott folyásgörbéjét szemlélteti az 1.2 ábra.

A hőmérséklet (T) és az összehasonlító alakváltozás-sebesség ($\dot{\lambda}_{\ddot{o}}$) folyágörbére gyakorolt hatása látható az 1.3 ábrán.

Az 1.3/a ábra a technikai tisztaságú (Al99,5) alumínium különböző hőmérsékleten, $\hat{\lambda}_{\ddot{0}} = 0,1 [1 / s]$ összehasonlító alakváltozás-sebességgel meghatározott folyásgörbéit szemlélteti.

1.2 ábra.

Az ábrán megfigyelhető, hogy 200[°C] alakítási hőmérséklet felett a növekvő $\lambda_{\ddot{o}}$ értékekhez csökkenő k_f értékek tartoznak. A jelenség magyarázata, hogy 200[°C] feletti hőmérsékleteken a diszlokációk "mászásához" egyre kedvezőbb feltételek alakulnak ki, ami az alakítási szilárdság csökkenéséhez vezet.

Az 1.3/b ábrán a C15 jelű acél 1100 °C-on, különböző összehasonlító alakváltozássebességgel felvett folyásgörbéi láthatók.

A $\dot{\lambda}_{\ddot{O}}$ nagyobb értékeinél ugyancsak megfigyelhető, hogy bizonyos összehasonlító alakváltozás értékek felett a növekvő $\lambda_{\ddot{O}}$ értékekhez csökkenő k_f értékek tartoznak. Ennek magyarázata, hogy $\dot{\lambda}_{\ddot{O}}$ nagy értékeinél az alakítási folyamat adiabatikus jellegűvé válik.

Az adiabatikus folyamat olyan termodinamikai állapotváltozás, amelyben a változó anyagi rendszer és környezete között hőcsere nem történik (a gyakorlatban a megfelelő hőszigetelés vagy a változás gyorsasága miatt).

A $\lambda_{\ddot{o}} > 100 [1 / s]$ összehasonlítóalakváltozás-sebességgel végzett alakítási folyamatoknál a darabban nagyobbrészt hővé váló alakítási munka a képlékeny zóna hőmérsékletét növeli, mivel a folyamat gyorsasága miatt nincs idő a környezetnek átadódni. Ekkor az alakítás nem a tervezett (az 1.3/b ábrán 1100[°C]-on), hanem attól nagyobb hőmérsékleten megy végbe, ami az alakítási szilárdság csökkenéséhez vezet.

A folyásgörbe meghatározás méréstechnikailag nem egyszerű feladat, mert mérés során nehéz biztosítani, hogy az alakváltozás egytengelyű feszültségállapotban menjen végbe, valamint azt, hogy a próbatest hőmérséklete és összehasonlító alakváltozás–sebessége a mérés közben állandó értékű legyen.

Az alakítandó anyag folyásgörbéjének meghatározására számos mérési módszer ismert. A módszerek rendszerezése elvégezhető aszerint, hogy az adott mérési eljárásnál, milyen mérési elv felhasználásával valósítható meg a közel egytengelyű feszültségállapot a képlékenyen alakváltozó próbatest pontjaiban.

A mérési módszerek az alábbi három csoportba sorolhatók:

a./ A képlékenyen alakváltozó próbatestben - több, különböző mértékű deformációnál - kialakuló többtengelyű feszültségállapot komponenseit a megfelelő összefüggésekkel meghatározzuk, majd azok ismeretében valamelyik képlékenységi hipotézisből (HMH, vagy TM) levezetett σ_ö összehasonlító feszültséget kiszámítva, az:

$$\mathbf{f} = \boldsymbol{\sigma}_{\mathbf{\ddot{o}}} - \mathbf{k}_{\mathbf{f}} = \mathbf{0}$$
 1.4

folyási függvényből következően egyúttal k_f értékét is előállítottuk. Például a **hengeres próbatest szakítóvizsgálatával végzett folyásgörbe meghatározás**nál – a kontrakció tartományában – ezen elv felhasználásával végezhető a folyásgörbe pontok meghatározása. A módszer méréstechnikailag nehézkes, ezért a gyakorlatban nem terjedt el.

- b./ Az egytengelyű feszültségállapot jó közelítéssel megvalósítható, ha a mérés során biztosítjuk az alakváltozó próbatest- és szerszámfelület (pl. nyomóbetét felület) között az elhanyagolhatóan kis értékű súrlódást. Ezen az elven alapul a hengeres próbatest zömítővizsgálatával és a lapos próbatest zömítővizsgálatával végzett folyásgörbe meghatározás.
- c./ A harmadik csoportba azok az eljárások sorolhatók, amelyeknél a mérés feltételeit úgy választjuk meg, hogy a mérés eredményeinek feldolgozása során az egytengelyű feszültségállapotra a mérési adatokból következtetni lehessen. Ezen az elven alapul a hengeres próbatestek zömítővizsgálatával végzett folyásgörbe meghatározás (extrapolációs módszer).

A "b./" és "c./" csoportba tartozó módszerek viszonylag egyszerű mérőeszközökkel és könnyen gyártható próbatestekkel kivitelezhetők. A mérési adatok feldolgozása, a folyásgörbe pontok grafikus megjelenítése számítógéppel gyorsan elvégezhető.

A továbbiakban az alábbi folyásgörbe mérési módszereket ismertetjük:

- Folyásgörbe meghatározás hengeres próbatest zömítővizsgálatával.
- Folyásgörbe meghatározás hengeres próbatestek zömítővizsgálatával (Extrapolációs módszer).
- Folyásgörbe meghatározás lapos próbatest zömítővizsgálatával (Watts-Ford módszer).

2. Folyásgörbe meghatározás hengeres próbatest zömítővizsgálatával

2.1 A mérés elméleti alapjai

A mérés elvi vázlata a 2.1 ábrán látható.

2.1 ábra.

Hengeres próbatest axiális irányú zömítése során felvett erő (F) – út (Δ h) diagram felhasználásával határozzuk meg a folyásgörbe pontjait.

A **zömítőerő** mérésére a mozgó pofa és a nyomóbetét közé épített erőmérő cella szolgál, amelynek villamos jele – erősítés után – az X–Y író függőleges kitérítését végzi.

A próbatest **magasságcsökkenésével** - vagyis a zömítési úttal - arányos villamos jelet az útadó állítja elő, amely az X–Y író vízszintes kitérését biztosítja. A mérés során a mozgó pofa v_0 = állandó sebességgel zömíti a próbatestet.

A próbatest véglapjain – a Δh_i magasságcsökkenésnél – létrejövő p_i nyomáseloszlást és \overline{p}_i átlagnyomást a 2.2 ábra szemlélteti

átlagnyomást a 2.2 ábra szemlélteti.

A zömülés közben a próbatest hordósodik (a palástalkotók nem tartják meg párhuzamosságukat). A hordósodás jelenségét az okozza, hogy a nyomólapok és a próbatest véglapjai között fellépő τ súrlódási feszültség fékezi a radiális irányú anyagmozgást. A τ megjelenése miatt a próbatestben a feszültségállapot többtengelyű. Ha a zömítésnél sikerül biztosítani, hogy a súrlódás elhanyagolhatóan kis értékű legyen a véglapokon (tehát a τ súrlódási feszültség értéke kicsi), akkor a próbatestben jó közelítéssel egytengelyűnek tekinthető a feszültségállapot.

2.2 ábra.

Adott h_i próbatest magassághoz tartozó átlagnyomás a próbatest véglapjain (levezetését lásd: [2]):

$$\overline{p}_{i} \approx \left(k_{f}\right)_{i} \cdot \left[1 + \frac{\mu}{3} \cdot \frac{d_{i}}{h_{i}}\right]$$
 2.1

ahol:

$$d_{i} = d_{o} \cdot \sqrt{\frac{h_{o}}{h_{i}}}$$
 2.2

A 2.1 és 2.2 képletek jelölései:

 $(k_f)_i$ - a próbatest anyagának h_i zömítési magasságához tartozó alakítási szilárdsága, μ - a Coulomb féle súrlódási tényező a nyomóbetétek és a próbatest felülete között,

h_i - a próbatest pillanatnyi magassága,

d_i - a próbatest h_i magasságához tartozó névleges átmérő.

Az átlagnyomásra felírt képlet alapján belátható, hogy $\mu \approx 0$ esetén:

$$\overline{p}_{i} \approx \left(k_{f}\right)_{i} \qquad 2.3$$

Az adott h_i magassághoz tartozó F_i zömítőerő és az A_i nyomott felület ismeretében az átlagnyomás egyszerűen meghatározható, ami a fentiek alapján egyben az alakítási szilárdság meghatározását is jelenti:

$$\left(k_{f}\right)_{i} \approx \overline{p}_{i} = \frac{F_{i}}{A_{i}}$$
 2.4

$$A_{i} = d_{i}^{2} \cdot \frac{\pi}{4}$$
 2.5

ahol:

Fi - a hi zömítési magassághoz tartozó (mért) zömítőerő,

A_i - a h_i zömítési magassághoz tartozó nyomott felület.

A térfogatállandóság felhasználásával a képletet úgy alakítjuk át, hogy a nyomódiagramból vett adatok közvetlenül helyettesíthetők legyenek. A térfogatállandóság:

$$d_{o}^{2} \cdot \frac{\pi}{4} \cdot h_{o} = d_{i}^{2} \cdot \frac{\pi}{4} \cdot h_{i}$$
 2.6

amelyől:

$$d_i^2 = d_o^2 \cdot \frac{h_o}{h_i}$$
 2.7

Helyettesítés és rendezés után:

$$\left(k_{f}\right)_{i} \approx \frac{F_{i}}{d_{o}^{2}} \cdot \frac{h_{i}}{h_{o}} \cdot \frac{4}{\pi}$$
 2.8

amely kifejezhető a próbatest Δh; magasságcsökkenésével is, a:

$$\Delta h_{i} = h_{o} - h_{i} \qquad 2.9$$

összefüggés felhasználásával:

$$\left(k_{f}\right)_{i} \approx \frac{F_{i}}{d_{o}^{2}} \cdot \frac{h_{o} - \Delta h_{i}}{h_{o}} \cdot \frac{4}{\pi}$$
 2.10

A Δh_i magasságcsökkenéshez tartozó összehasonlító alakváltozást tömör, hengeres próbatest axiális irányú zömítésekor a:

$$\left(\lambda_{\ddot{o}}\right)_{i} = ln \frac{h_{o}}{h_{i}} = ln \frac{h_{o}}{h_{o} - \varDelta h_{i}}$$
 2.11

összefüggéssel számítjuk (lásd:[1])

.

2.2 A mérés végrehajtása, a mérési eredmények kiértékelése

A mérést nyomó–üzemmódban dolgozó, hidraulikus működtetésű szakítógépen végezzük. A h_0 és d_0 kiinduló magasságú illetve átmérőjű próbatestet – a gépasztalhoz, illetve a mozgó pofához erősített – nyomóbetétek közé helyezzük. A kihajlásveszély elkerülésére: $h_0/d_0 \le 2$ feltételt a próbatest kiinduló méreteinek ki kell elégíteni.

A próbatest véglapjait polírozzuk, a h_0 magasságát és d_0 átmérőjét tolómérővel megmérjük, a mért értékeket feljegyezzük.

A nyomóbetétek és a próbatest felületére kenőanyagot viszünk fel. A tökéletes kenés biztosítása érdekében a próbatest véglapjain szokás olyan süllyesztést kialakítani (2.3 ábra) amelyek alkalmasak arra, hogy a kenőanyagot a zömítés során megtartsák. Az ilyen véglapkialakításnál a felületek között kialakuló kenőanyagpárna a súrlódási tényezőt minimálisra csökkenti. Ekkor a τ súrlódási feszültség elhanyagolhatóan kis értéke miatt, a próbatestben ébredő feszültségállapot jó közelítéssel egytengelyűnek tekinthető.

2.3 ábra.

A kenőanyagfészek alkalmazásának hatékonyságát szemlélteti a 2.4 ábra. A 2.4/a ábra $d_0=10 \text{ mm}$ és $h_0=16 \text{ mm}$ kiinduló átmérőjű és magasságú próbatestet szemléltet, amelyből egy darab hagyományos és egy darab kenőanyagfészkekkel kerül kialakításra. A 2.4/b ábrán a hagyományos kialakítású próbatest $\lambda_{\ddot{0}} = 0,7$ összehasonlító alakváltozásnál létrejött alakja látható. A 2.4/c ábra a kenőanyagfészekkel ellátott próbatest alakját szemlélteti $\lambda_{\ddot{0}} = 1,3$ összehasonlító alakváltozásnál. Jól látható, hogy az utóbbi esetben közel kétszer akkora összehasonlító alakváltozásnál a próbatest palástalkotói megtartották párhuzamosságukat, tehát az alakváltozás közel egytengelyű feszültségállapotban ment végbe.

2.4 ábra.

A próbatestet a nyomóbetétek közé helyezve elvégezzük a zömítést, az X–Y íróval megrajzoltatjuk a nyomódiagramot (F – Δ h diagram, 2.5 ábra).

2.5 ábra.

A diagram "B" jelű tartományában a görbén kijelölünk legalább hat pontot ($i_{min} = 6$), egymástól közel egyenlő távolságra. Az "A" jelű tartományban a részben rugalmas viselkedés, a "C" tartományban (erősen emelkedő tartomány) a többtengelyű feszültségállapot miatt pontot nem célszerű kijelölni.

A felvett pontokból a leterhelés vonalával ("a") párhuzamost húzva, a vizszintes tengelyen kijelölhető a Δh_1 , Δh_2 Δh_i maradó magasságcsökkenés. Az erő és az elmozdulás lépték ismeretében az összetartozó $F_i - \Delta h_i$ értékek a nyomódiagramból meghatározhatók.

A Δh_i magasságcsökkenéshez tartozó $(k_f)_i - (\lambda_{\ddot{0}})_i$ értékeket a 2.10 és 2.11 összefüggéssekkel határozzuk meg.

A számítási eredményeket a 2.1 táblázat szerint célszerű összefoglalni:

				2.1 táblázat.
i	Fi	Δh_i	(k _f) _i	$(\lambda_{\ddot{O}})_{\dot{I}}$
	[N]	[mm]	[N/mm ²]	
1.				
2.				
i _{max}				

A $(k_f)_i - (\lambda_{\ddot{o}})_i$ értékeket diagramban ábrázolva, a folyásgörbét – a kis képlékeny alakváltozások tartományát kivéve – meghatároztuk (2.6 ábra).

A k_{fo} értéke – vizsgált anyagminőségből készített szakítópróbatest elszakítása során mért, a folyás megindulásához tartozó (F_p vagy F_{p0,2}) erő és a próbatest kiinduló (A₀) keresztmetszetének hányadosa – a statikus folyáshatárral azonos (k_{fo} = R_{p0,2}).

2.6 ábra.

Mint az előzőekből ismert, a $k_f = f(\lambda_{\ddot{O}})$ mérése során a próbatest ($\lambda_{\ddot{O}}$) összehasonlító alakváltozzás-sebességét és T(°C) hőmérsékletét állandó értéken kell tartani és ezek értékét –mint paramétereket – a folyásgörbéhez mellékelni kell.

A továbbiakban megvizsgáljuk, hogy az állandó v_o nyomószánsebességgel végzett zömítés során hogyan alakul a próbatest pontjaiban az összehasonlító alakváltozás-sebesség.

A próbatest hőmérsékletének állandó értéken tartásánál figyelembe kell venni, hogy az nem csak külső hőközlés, vagy hőelvonás következtében változhat meg. A képlékenyalakítás során az alakváltozási munka jelentős része hővé alakul és a próbatest hőmérsékletét növeli. Tehát ismernünk kell, hogy a felszabaduló hőmennyiség következtében a próbatest milyen mértékű hőmérsékletváltozására számíthatunk.

2.3 Az alakítási szilárdságot befolyásoló paraméterek értékének meghatározása

2.3.1 Az összehasonlító alakváltozás-sebesség a mérés során

Az összehasonlító alakváltozás-sebesség hengeres tömör próbatest axiális irányú, $v_0 =$ állandó nyomószánsebességgel végzett zömítésekor (levezetést lásd: [1]-ben):

$$\left(\dot{\lambda}_{\ddot{o}}\right)_{i} = \frac{v_{o}}{h_{i}}$$
 2.13

vagy a Δhi magasságcsökkenéssel kifejezve:

$$\left(\dot{\lambda}_{\ddot{o}}\right)_{i} = \frac{v_{o}}{h_{o} - \varDelta h_{i}}$$
 2.14

A fenti összefüggésekben a h_i és a Δh_i független változók értelmezési tartománya $h_0 \ge h_i > 0$, illetve $0 \le \Delta h_i < h_0$.

Az összehasonlító alakváltozás-sebességet ábrázolva a h_i próbatestmagasság függvényében a 2.7 ábrán látható diagramot kapjuk, amely alapján megállapítható, hogy $v_0 =$ állandó nyomószánsebesség esetén a képlékenyen alakváltozó próbatest pontjaiban az összehasonlító alakváltozás-sebesség monoton növekszik.

Például egy $h_0 = 20 \text{ mm}$ kiinduló magasságú próbatestet $v_0 = 1 \text{ mm/s}$ nyomószánsebességgel h; = 5 mm magasságra zömítve, az összehasonlító alakváltozáskezdetén $(\dot{\lambda}_{\ddot{o}})_0 = 0.05 \ [1/s],$ sebesség zömítés a zömítés befejezésekor $(\dot{\lambda}_{\ddot{o}})_{i} = 0,2$ [1/s]. Az adott geometriai méretek mellett négyszeres összehasonlító alakváltozás-sebesség növekedés jött létre a zömítés kezdeti és befejező pillanata között.

2.7 ábra.

A probléma megoldására két lehetőség kínálkozik:

1./ A nyomószán sebességét a pillanatnyi próbatestmagasság függvényében úgy kell szabályozni, hogy $\dot{\lambda}_{\ddot{0}}$ állandó értékű legyen a mérés során. (A szakítógépek ilyen szabályozóegységgel általában nincsenek felszerelve).

2./ Tudomásul vesszük a mérés során változó összehasonlító alakváltozás-sebességet és annak $h_0 - h_i$ tartományra vett $(\dot{\lambda}_{\ddot{o}})_{k\ddot{o}z}$ integrálközépértékét fogadjuk el a folyásgörbe mérésnél alkalmazott összehasonlító alakváltozás-sebességnek.

Az utóbbi lehetőséget alkalmazva, tehát a 2.13 összefüggés integrálközép-értéke:

$$\left(\dot{\lambda}_{\ddot{o}(k\ddot{o}z)}\right)_{i}\cdot\left(h_{o}-h_{i}\right)=\int_{h_{i}}^{h_{o}}v_{o}\cdot\frac{dh_{i}}{h_{i}}=v_{o}\cdot\ln\frac{h_{o}}{h_{i}}=v_{o}\cdot\left(\lambda_{\ddot{o}}\right)_{i}$$
 2.15

Rendezés után a közepes összehasonlító alakváltozás-sebesség:

$$\left(\dot{\lambda}_{\ddot{o}(k\ddot{o}z)}\right)_{i} = \frac{v_{o} \cdot \left(\lambda_{\ddot{o}}\right)_{i}}{\left(h_{o} - h_{i}\right)} = \frac{v_{o} \cdot \left(\lambda_{\ddot{o}}\right)_{i}}{\varDelta h_{i}}$$
 2.16

Az előző példa adataival, az adott $\Delta h_i = 15 \text{ mm-es}$ zömítési úthoz tartozó közepes összehasonlító alakváltozás-sebesség: $(\dot{\lambda}_{\ddot{o}(k\ddot{o}z)})_{\Delta h_i = 15} = 0,0924 [1/s].$

2.3.2 A próbatest hőmérséklete a mérés során

A szobahőmérsékleten végzett zömítő vizsgálatnál a próbatest kezdő hőmérséklete a környezet hőmérsékletével azonos.

A vizsgálat során az alakváltozás létrehozásához szükséges munka nagyobb részben hővé alakul és a próbatest hőmérsékletét növeli. Ismernünk kell, hogy a hővé alakuló deformációs munka milyen mértékben változtatja meg a próbatest hőmérsékletét.

A térfogategységben elnyelt ideális alakváltozási munka, a – zömítés során létrehozott összehasonlító alakváltozásig terjedő – folyásgörbe alatti területtel arányos (levezetést lásd: [1]-ben).

A folyásgörbe alatti terület:

$$w = \int_{0}^{\lambda_{\ddot{o}}} k_{f}(\lambda_{\ddot{o}}) \cdot d\lambda_{\ddot{o}}$$
 2.17

Ha a vizsgált anyagminőség folyásgörbéjét az alábbi egyszerű hatványfüggvény:

$$\mathbf{k}_{\mathbf{f}} = \mathbf{c} \cdot \boldsymbol{\lambda}_{\ddot{\mathbf{o}}}^{\mathsf{n}} \qquad 2.18$$

írja le, ahol:

c - a keményedési együttható,

n - a keményedési kitevő.

akkor a helyettesítés és az integrálás elvégzése után:

$$w = \int_{0}^{\lambda_{\ddot{o}}} c \cdot \lambda_{\ddot{o}}^{n} \cdot d\lambda_{\ddot{o}} = \frac{c}{n+1} \cdot \lambda_{\ddot{o}}^{n+1}$$
 2.19

ahol, $\lambda_{\ddot{O}}$ az összehasonlító alakváltozás:

$$\lambda_{\ddot{o}} = \ln \frac{h_{o}}{h}$$
 2.20

Például egy $d_0=10 \text{ mm}$ és $h_0=20 \text{ mm}$ kiinduló átmérőjű és magasságú C10 anyagminőségű acél próbatestet (amelynek folyásgörbe paraméterei:

$$c = 683,51 \cdot 10^{6} [N/m^{2}], \qquad n = 0,2249,$$

h = 5 [mm] végső magasságra zömítve, a térfogategységben elnyelt alakváltozási munka:

$$w = 8.325 \cdot 10^8 \, [J/m^3].$$

A bevitt alakváltozási munka kb. 2...5%–a a kristályrács energiatartalmát növeli (diszlokációk, üres rácshelyek számának növekedése révén).

Adiabatikus alakváltozásnál (nincs hőcsere a próbatest és a környezet között) az energiaegyensúly:

$$\mathbf{w} \cdot \boldsymbol{\eta} = \boldsymbol{\rho} \cdot \mathbf{C} \cdot \Delta \mathbf{T}$$
 2.21

ahol:

w - az alakítás során a próbatest térfogategységben elnyelt alakváltozási munka [J/m³], η - a hővé alakult és a teljes munkamennyiség viszonyszáma (η =0,98 ... 0,95),

 ρ - az alakított anyag sűrűsége (acélra: $\rho = 7,87 \cdot 10^3 \, [\text{kg/m}^3]$),

C - az alakított anyag fajhője (acélra: $C = 0,46 \cdot 10^3 [J/kg \circ C]$),

ΔT - az alakított darab hőmérsékletnövekedése [°C]

A zömített darab hőmérsékletváltozását az előbbi összefüggésből kifejezve:

$$\Delta \mathsf{T} = \frac{\eta \cdot \mathsf{w}}{\rho \cdot \mathsf{C}}$$
 2.22

 η = 0,95 értékkel és az acélanyagra megadott ρ és C értékekkel számolva, a hőmérsékletnövekedés:

$$\Delta T = \frac{0,95 \cdot 832,5 \cdot 10^6}{7,87 \cdot 10^3 \cdot 0,46 \cdot 10^3} = 218,5 \ [^{\circ}C] \qquad 2.23$$

A számított hőmérséklet-növekedés adiabatikus körülmények között érvényes, amikor nincs hőközlés a próbatest és a környezet között.

A mérés körülményei között ez nem áll fenn. Ugyanis a nyomóbetétek intenzív hőelvonást valósítanak meg, de nem hanyagolható el a környező levegőnek leadott hőmennyiség sem. A zömített próbatesten tapintással észlelhető a hőmérsékletnövekedés.

A fentiekből következik, hogy a próbatest hőmérséklete a zömítés közben nem állandó. Ha a zömítést kellően kicsi ($v_0 \le 0,1$ mm/s) nyomószánsebességgel hajtjuk végre, akkor a zömítési folyamatot időben megnyújtjuk, ezzel lehetőséget biztosítunk a hőelvonásra. Ekkor a darab hőmérséklet-növekedése elhanyagolható mértékű, s alig befolyásolja a zömítővizsgálat mérési eredményeiből meghatározott alakítási szilárdság értékeket.

3. Folyásgörbe meghatározás hengeres próbatestek zömítővizsgálatával (Extrapolációs módszer)

3.1 A mérés elméleti alapjai

A 2. pontban tárgyalt módszernél látható volt, hogy egy "h_i" magasságra zömített hengeres próbatest felületén az átlagnyomás meghatározható a:

$$\overline{p}_{i} = \left(k_{f}\right)_{i} \cdot \left(1 + \frac{\mu}{3} \cdot \frac{d_{i}}{h_{i}}\right)$$

$$3.1$$

összefüggéssel.

A térfogatállandóság felhasználásával kifejezve a próbatest "h_i" magasságához tartozó névleges átmérőt:

$$d_{i} = d_{o} \cdot \sqrt{\frac{h_{o}}{h_{i}}} = d_{o} \cdot \frac{h_{i}}{h_{o}} \cdot \sqrt{\frac{h_{o}^{3}}{h_{i}^{3}}}$$
 3.2

 d_i/h_i értéket kifejezve, majd helyettesítve az előbbi összefüggésbe, egyszerűsítés után írható:

$$\overline{p}_{i} = \left(k_{f}\right)_{i} \cdot \left(1 + \frac{\mu}{3} \cdot \frac{d_{o}}{h_{o}} \cdot \sqrt{\frac{h_{o}^{3}}{h_{i}^{3}}}\right)$$
 3.3

Az átalakított összefüggés alapján belátható, hogy a:

$$\overline{p}_{i} \approx \left(k_{f}\right)_{i} \qquad 3.3$$

(egytengelyű feszültségállapot) elvileg úgy is elérhető, ha olyan próbatestet zömítünk a mérés során amelynek " h_0 " értéke végtelen nagy " d_0 "-hoz képest, mert ekkor:

$$\frac{d_{o}}{h_{o}} = 0 \qquad 3.4$$

A gyakorlatban ilyen geometriájú próbatest nem készíthető, sőt a próbatest kezdő méreteinek viszonyszáma, – a kihajlásveszély elkerülése miatt – ki kell elégítse a következő feltételt:

$$\frac{d_o}{h_o} \ge \frac{1}{2}$$
 3.5

3.2 A mérés végrehajtása, a mérési eredmények értékelése

Az extrapolációs módszernél több, különböző (h_0 , d_0) kezdőmérettel rendelkező – de az előbbi feltételt kielégítő – próbatest nyomódiagramját regisztráljuk. A kölönböző kezdő geometriával rendelkező próbatestek sorszámát a "j" indexváltozó jelölje.

A gyakorlatban d_0 = constans átmérőjű, különböző $(h_0)_j$ hosszúságú próbatest sorozatot készítünk a zömítéshez, amelyeknél a kiinduló geometria viszonyszáma $X_j = d_0/(h_0)_j$ összefüggéssel számítható. Egy ilyen lehetséges próbatest sorozatot szemléltet a 3.1 ábra, feltüntetve a próbatestek kezdőméreteit.

3.1 ábra.

A 3.2 ábra a különböző $d_0/(h_0)_j$ kinduló viszonyszámú próbatestek zömítése során, egyetlen koordináta-rendszerbe rajzolt elvi erő - út diagramjait szemlélteti.

A következő lépésben, előre rögzített (felvett) $(\lambda_{\ddot{o}})_{i}$ összehasonlító alakváltozás értékekhez meghatározzuk a próbatestek h_{ij} magasságát, Δh_{ij} magasságcsökkenését és A_j keresztmetszetét.

Az i - ik sorszámú $(\lambda_{\ddot{o}})_i$ összehasonlító alakváltozás felírható a zömített próbatest kezdeti és pillanatnyi magassági méretével, vagy a pillanatnyi és az eredeti keresztmetszetével, az alábbi összefüggések szerint:

$$\left(\lambda_{\ddot{o}}\right)_{i} = ln \frac{\left(h_{o}\right)_{j}}{h_{ij}} = ln \frac{A_{i}}{A_{o}}$$
 3.6

Az összefüggésből hij értéke kifejezhető az összehasonlító alakváltozással:

$$\mathbf{h}_{ij} = \left(\mathbf{h}_{o}\right)_{j} \cdot \mathbf{e}^{-\left(\lambda_{\ddot{o}}\right)_{j}}$$
 3.7

illetve a hozzá tartozó magasságcsökkenés:

$$\Delta h_{ij} = (h_o)_j - h_{ij}$$
 3.8

3.2 ábra.

A próbatestek pillanatnyi magasságára, illetve magasságcsökkenésére az alábbi mátrixokat kapjuk:

$$\mathbf{h}_{ij} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} & \mathbf{h}_{13} & \mathbf{h}_{14} & \mathbf{h}_{15} \\ \mathbf{h}_{21} & \mathbf{h}_{22} & \mathbf{h}_{23} & \mathbf{h}_{24} & \mathbf{h}_{25} \\ \mathbf{h}_{31} & \mathbf{h}_{32} & \mathbf{h}_{33} & \mathbf{h}_{34} & \mathbf{h}_{35} \\ \mathbf{h}_{41} & \mathbf{h}_{42} & \mathbf{h}_{43} & \mathbf{h}_{44} & \mathbf{h}_{45} \\ \mathbf{h}_{51} & \mathbf{h}_{52} & \mathbf{h}_{53} & \mathbf{h}_{54} & \mathbf{h}_{55} \end{bmatrix}$$

$$3.9$$

$$\Delta h_{ij} = \begin{bmatrix} \Delta h_{11} & \Delta h_{12} & \Delta h_{13} & \Delta h_{14} & \Delta h_{15} \\ \Delta h_{21} & \Delta h_{22} & \Delta h_{23} & \Delta h_{24} & \Delta h_{25} \\ \Delta h_{31} & \Delta h_{32} & \Delta h_{33} & \Delta h_{34} & \Delta h_{35} \\ \Delta h_{41} & \Delta h_{42} & \Delta h_{43} & \Delta h_{44} & \Delta h_{45} \\ \Delta h_{51} & \Delta h_{52} & \Delta h_{53} & \Delta h_{54} & \Delta h_{55} \end{bmatrix}$$
3.10

amelyeknek a h_{ij} illetve Δh_{ij} eleme a j-ik sorszámú próbatest i-ik összehasonlító alakváltozásához tartozó magassága, illetve magasságcsökkenése.

A $(\lambda_{\ddot{o}})_{i}$ értékekhez a próbatest keresztmetszeteket a 3.6 összefüggés rendezése után az:

$$A_{i} = A_{o} \cdot e^{\left(\lambda_{\ddot{o}}\right)_{i}}$$
 3.11

formulával számítjuk.

A j-ik próbatest véglapjain az i-ik összehasonlító alakváltozásnál fellépő átlagnyomás:

$$\overline{p}_{ij} = \frac{F_{ij}}{A_i} \qquad 3.12$$

összefüggéssel számítható, melynek eredményeként az alábbi mátrixot kapjuk:

$$p_{ij} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} \end{bmatrix}$$
 3.13

A mátrix első oszlopa a j=1 sorszámú próbatest i-ik összehasonlító alakváltozáshoz tartozó érékeit tartalmazza.

A mátrix elemeinek meghatározásához ismernünk kell a véglapon működő F_{ij} erőt, amely a j-ik sorszámú próbatest i-ik összehasonlító alakváltozásához tartozó erőt jelöli.

 F_{ij} értékeihez a nyomódiagrammok felhasználásával úgy jutunk, hogy a vizszintes tengelyre felmérjük (az elmozduláslépték figyelembevételével) a j=1 sorszámú próbatest Δ h_{i,1} magasságcsökkenéseit, amelyeket felvetítünk az X₁ = d₀/(h₀)₁ - hez tartozó görbére. A metszéspontok függőleges tengelyre vetítése után (az erőlépték figyelembevételével) leolvassuk az F_{i,1} erőértékeket (3.2 ábra).

Hasonló módon állítjuk elő a többi próbatest zömítése során az i-ik összehasonlító alakváltozáshoz tartozó erőket.

A leolvasott értékeket az alábbi mátrixba foglaljuk:

$$F_{ij} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} & F_{15} \\ F_{21} & F_{22} & F_{23} & F_{24} & F_{25} \\ F_{21} & F_{22} & F_{33} & F_{34} & F_{35} \\ F_{31} & F_{32} & F_{33} & F_{34} & F_{35} \\ F_{41} & F_{42} & F_{43} & F_{44} & F_{45} \\ F_{51} & F_{52} & F_{53} & F_{54} & F_{55} \end{bmatrix}$$

$$3.13$$

A mátrix első oszlopa a j=1 sorszámú próbatest i-ik összehasonlító alakváltozásához tartozó $F_{i,1}$ erőket tartalmazza. Az erőket tartalmazó mátrix ismeretében \overline{p}_{ii} elemei a 3.12

összefüggéssel számíthatók.

A \overline{p}_{ij} mátrix első sora (\overline{p}_{1j}) a j-ik próbatest véglapjain a $(\lambda_{\ddot{o}})_1$ összehasonlító alakváltozáshoz tartozó átlagnyomásokat tartalmazza.

A mátrix sorait az $X_1 = d_0/(h_0)$; függvényében ábrázolva egy - egy összehasonlító alakváltozáshoz tartozó pontsort kapunk (3.3 ábra).

 $A(\lambda_{\ddot{o}})_{1}, (\lambda_{\ddot{o}})_{2}$... stb -hez tartozó pontsorokra a legkisebb négyzetek módszerével egy-egy egyenest illesztve megkeressük az egyenesek függőleges tengellyel alkotott metszéspontját. A metszéspontokhoz tartozó p értékek olyan próbatesten "mérhető" átlagos felületi nyomásokat adnak, amelyek $X_0 = d_0/(h_0)_0 = 0$, azaz $(h_0)_0 = \infty$ geometriai jellemzőkkel rendelkező próbatesten lennének mérhetők, vagyis amelyben az alakváltozás egytengelyű feszültségállapot hatására ment végbe. A 3.3 összefüggésnek megfelelően tehát:

$$\overline{p}_{i} = \overline{p}_{i0} = \left(k_{f}\right)_{i} \qquad 3.14$$

A kapott $(k_f)_i$ értékeket a $(\lambda_{\ddot{0}})_i$ függvényében ábrázolva a folyásgörbe néhány pontját meghatároztuk (3.4 ábra).

3.3 ábra.

3.4 ábra.

4. Folyásgörbe meghatározás lapos próbatest zömítővizsgálatával (Watts – Ford módszer)

4.1 A mérés elméleti alapjai

A mérés a síkalakváltozást végző hasáb párhuzamos síklapok között végzett zömítésének elméletén alapul (részletesen lásd: [2]), melynek elvi vázlatát az 4.1 ábra szemlélteti.

4.1 ábra.

Jelölések: h₀ - a hasáb kiinduló magassága,

lo - a hasáb kiinduló szélessége,

b₀ - a hasáb kiinduló hossza,

h - a hasáb zömítés közbeni, pillanatnyi magassága,

1 - a hasáb zömítés közbeni, pillanatnyi szélessége.

Zömítésnél síkalakváltozás állapotban (b \approx b₀ = áll.) megy végbe a zömülés, ha a próbatest kezdő méretei kielégítik az alábbi feltételt:

$$\frac{b_{o}}{l_{o}} > 5$$
 4.1

A szerszám felületén a (h) zömítési magassághoz tartozó nyomáseloszlás a 4.2 ábrán látható.

A nyomólapokat terhelő felületi nyomás a (h) és (x) függvényében:

$$p(h,x) = \frac{2}{\sqrt{3}} \cdot k_{f}(h) \cdot e^{\frac{2 \cdot \mu}{h} \cdot \left(\frac{I(h)}{2} - x\right)}$$

$$4.2$$

ahol:

μ - Coulomb-féle súrlódási tényező,

 k_{f} - a (h) zömítési magassághoz tartozó alakítási szilárdság.

4.2 ábra.

A Watts – Ford vizsgálat elvi elrendezése, a próbatest kiinduló méretei, a (h) zömítési magassághoz tartozó állapot a 4.3 ábrán látható.

A 4.3 ábra jelölései:

- w nyomóbetét szélességi mérete,
- b₀ próbatest szélessége a zömítés kezdetekor,
- h₀ próbatest vastagsága a zömítés kezdetekor,
- h próbatest vastagsága a zömítés közben,
- B a nyomóbetét hosszmérete,
- F a zömítés erőszükséglete,
- p a nyomóbetét felületén a nyomáseloszlás a próbatest
 - (h) méretűre zömítésekor.

A 4.3 ábrán látható elrendezésnél a síkalakváltozás feltétele:

$$\frac{b}{w} > 5$$
 4.3

egyenlőtlenséggel fogalmazható meg.

A zömítőbetétek homlokfelületén a nyomáseloszlás a 4.2 összefüggés értelemszerű alkalmazásával:

$$p(h,x) = \frac{2}{\sqrt{3}} \cdot k_{f}(h) \cdot e^{\frac{2 \cdot \mu}{h} \cdot \left(\frac{w}{2} - x\right)}$$

$$4.4$$

formában írható fel.

A szerszám nyomóbetéteinek és a próbatest geometriai kialakításához a 4.3 és 4.4 összefüggések adnak útmutatást.

1./ A síkalakváltozás biztosítására a próbatest (b₀) szélessége és a nyomóbetét (w) szélessége ki kell elégítse a:

$$B > b_0 > 5 w$$
 4.5

feltételt. A gyakorlatban ez azt jelenti, hogy az adott (w és B) méretű betéthez kell a próbatest (b_0) szélességi méretét megválasztani a vizsgálat előtt, hogy a 4.5 feltétel teljesüljön.

2./ A (w) értéke két egymással ellentétes követelmény kompromisszumos megoldásával határozható meg.

Az egyik követelmény szerint előnyös, ha (w) értéke jóval kisebb a pillanatnyi (h) értéknél, mert ekkor a 4.4 összefüggés kitevője kicsi, tehát a súrlódás befolyásoló hatása a nyomáseloszlásra elhanyagolható.

A vizsgálatnál a másik követelmény, hogy a nyomó betétek alatt az alakváltozási zóna homogén legyen. Ez a (w) és a (h) bizonyos aránya mellett biztosítható. A nyomóbetétek között kialakuló inhomogén és közel homogén alakváltozási zónát szemlélteti a 4.4 ábra.

4.4 ábra.

A két ellentmondó feltétel kompromisszumos kielégítését jelenti, ha a zömítés során biztosítjuk, hogy a nyomóbetét (w) mérete és a zömített darab vastagsága megfeleljen az alábbi feltételnek:

$$2 \le \frac{\mathsf{w}}{\mathsf{h}} \le 4 \tag{4.6}$$

A fenti feltétel kielégítése mellett a folyásgörbe szűk tartománya határozható meg. A mérési tartomány növelése érdekében a zömítő szerszámhoz több, különböző (w) méretű, cserélhető nyomóbetétpár tartozik. A betétek cseréjével a folyásgörbe széles tartományban meghatározható az 4.6 feltétel megsértése nélkül.

A mérés megkezdése előtt a rendelkezésre álló szerszám nyomóbetét méreteinek és a vizsgálandó anyag kiinduló vastagsági méretének ismeretében a 4.5 és 4.6 feltételek alapján a szükséges betétpárok kiválaszthatók, a próbatest (b_0) szélességi mérete és az egyes betétpárokkal létrehozható (h) zömítési magasság meghatározható.

A vizsgálat során a zömítést megállítva az összetartozó erő (F) és vastagság (h) értékeket leolvassuk, illetve mikrométerrel megmérjük. A kritikus (h) értékek elérése után a szerszámban a betétpárt a szükséges méretűre cserélve, a zömítést folytatjuk. Egy – egy betétpárral legalább három összetartozó F – h értéket célszerű meghatározni.

A mérési eredmények felhasználásával a folyásgörbe pontjainak meghatározása a következő.

Az összehasonlító alakváltozás az alakváltozási zónában:

$$\lambda_{\ddot{o}} = \sqrt{\frac{2}{3} \cdot \left(\lambda_{x}^{2} + \lambda_{y}^{2} + \lambda_{z}^{2}\right)}$$

$$4.7$$

Figyelembe véve:

$$\lambda_{\rm y} \approx 0$$
 4.8

$$\lambda_{z} = ln \frac{h}{h_{o}}$$

$$4.9$$

$$\lambda_{x} + \lambda_{y} + \lambda_{z} = 0 \qquad 4.10$$

így:

$$\lambda_{\mathbf{x}} = -\lambda_{\mathbf{z}} \tag{4.11}$$

A 4.7 ... 4.11 felhasználásával a "h" magasságra zömített alakváltozási zóna összehasonlító alakváltozása:

$$\lambda_{\ddot{o}} = \frac{2}{\sqrt{3}} \cdot \ln \frac{h_{o}}{h}$$
 4.12

A (k_f) alakítási szilárdságot a 4.4 összefüggés felhasználásával, az alábbi elhanyagolások figyelembevételével határozzuk meg.

Ha a

- betétpárok homlokfelülete leppelt,
- a próbatest nyomott felülete az előkészítés során köszörüléssel készül,
- valamint a zömítés során megfelelő minőségű kenőanyagot használunk,

akkor a súrlódási tényező értéke elhanyagolhatóan kicsi.

$$\mu \approx 0 \tag{4.13}$$

így a 4.4 - ből

$$p \approx \frac{2}{\sqrt{3}} \cdot k_{f}$$
 4.14

ahol

$$p = \frac{F}{w \cdot b_{0}}$$
 4.15

A 4.14 és 4.15 felhasználásával

$$k_{f} = \frac{\sqrt{3}}{2} \cdot \frac{F}{w \cdot b_{0}}$$
 4.16

Az összetartozó k $_f$ – $\lambda_{\ddot{0}}$ értékekkel meghatározott folyásgörbe elvi vázlatát az 4.5 ábra szemlélteti.

4.5 ábra.

4.2 A nyomóbetétek kiválasztása

Tételezzük fel, hogy a zömítőszerszámhoz az 4.1 táblázatban feltüntetett méretű betétpárok tartoznak.

		4.1 tábláza
	Szélessége	Hossza
A betétpár jele	w [mm]	B [mm]
a.	8	40
b.	6	40
с.	5	40
d.	4	40
e.	3	40
f.	1,5	40
g.	1	40

A vizsgálandó próbatest vastagsági mérete $h_0 = 3$ [mm], anyaga: Al99,5.

A (b.) jelű betétpárral kezdve (ekkor w = $2 \cdot h_0$) a zömítést, h_0 -ról h = 1,5[mm]-ig (ekkor w = $4 \cdot h$) végezhetjük a (4.6) feltétel megsértése nélkül. A betétek kicserélése után az (e.) jelű betétpárral h = 0,75[mm]-ig, majd a (g.) jelű betétpárral h = 0,375[mm]-ig zömíthetünk.

Az első betétpárral létrehozott maximális összehasonlító-alakváltozás:

$$\lambda_{\ddot{o}(I)} = \frac{2}{\sqrt{3}} \cdot ln \frac{3}{2} = 0,8003$$

a második betétpárral létrehozott maximális összehasonlító-alakváltozás:

$$\lambda_{\ddot{o}(II)} = \frac{2}{\sqrt{3}} \cdot \ln \frac{3}{0,75} = 1,601$$

a harmadik betétpárral létrehozott maximális összehasonlító-alakváltozás::

$$\lambda_{\ddot{o}(III)} = \frac{2}{\sqrt{3}} \cdot ln \frac{3}{0,375} = 2,401$$

Ilyen mértékű összehasonlító alakváltozás elviselésére csak képlékenyen jól alakítható anyagok képesek (pl. Al99,5).

Képlékenyen kevésbé jól alakítható anyagoknál ekkora deformációt ($\lambda_{o(III)}$) a mérés során

létrehozni nem tudunk, mert a törésig kisebb alakváltozás elviselésére képesek, továbbá a felkeményedés és a betétek vékonyodása miatt a szerszám fajlagos terhelése nő, terhelhetősége csökken. A fenti okok miatt például Cr1-es anyagot – az adott méretviszonyok mellett – valószínű csak az első két betétpárral zömíthetnénk.

A (4.5) feltétel figyelembevételével a próbatest szélességi méretét célszerű $b_0 = 32$ [mm]re megmunkálni a zömítés megkezdése előtt. Ekkor a síkalakváltozás feltétele teljesül ($b_0 > 5$ w) és a zömítés közben kis mértékben szélesedő próbatest a nyomóbetétek közül nem folyik ki ($B > b_0$).

4.3 A mérési eredmények értékelése

Az egyes betétpárokkal mért (F_{ij}), (v_{ij}) értékeket és a mérési eredményekből számolt ($\lambda_{\ddot{o}}$)_{ij}, (k_{f})_{ij} értékeket a 4.2 táblázat tartalmazza, ahol:

$$\left(\lambda_{\ddot{o}}\right)_{ij} = \frac{2}{\sqrt{3}} \ln \frac{h_{o}}{h_{ij}}$$

$$4.17$$

és

$$\left(k_{f}\right)_{ij} = \frac{\sqrt{3}}{2} \cdot \frac{F_{ij}}{w_{i} \cdot b_{o}}$$

$$4.18$$

A 4.17 és 4.18 összefüggésekben az első index a betétpár sorszámát, a második az adott betéttel mért érték mérési sorszámát jelöli.

A 4.2 táblázat számított értékeivel megrajzolt folyásgörbét a 4.6 ábra szemlélteti.

4.2 táblázat

		Mért értékek		Számított értékek	
Betét sorszáma (i)	Szélessége	F _{ij}	h _{ij}	$\left(\lambda_{\ddot{o}}\right)_{ij}$	$\left(k_{f}\right)_{ij}$
	w _i [mm]	[N]	[mm]	-	[N/mm ²]
	6	24387	2,55	0,188	110
1.	6	27713	1,95	0,497	125
	6	31038	1,50	0,800	140
	3	16628	1,26	1,002	150
2.	3	17736	0,89	1,403	160
	3	18069	0,75	1,601	163
3.	1,5	9589	0,53	2,002	173
	1,5	9755	0,45	2,191	176
	1,5	9866	0,375	2,401	178

A 4.6 ábrán a mérésből	meghatározott k	$f - \lambda_{\dot{c}}$; értékeket "+	" jelöli. A	szaggatott gö	rbe a
	0		,		00 0	

$$\left(k_{f}\right)_{i} = c \cdot \left(\lambda_{\ddot{o}}\right)_{i}^{n}$$
 4.19

alakú egyszerű hatványfüggvénnyel számított k_f értékeket szemlélteti. A függvény "c" és "n" paramétereit a legkisebb négyzetek módszerével határoztuk meg (c = 149,1 [N/mm²], n = 0,199).

5. Folyásgörbe egyenletek paramétereinek meghatározása

A képlékenyalakító technológiák tervezésekor az alakított fémre vonatkozó adatbázisnak tartalmaznia kell a folyásgörbe adatait.

A számítógéppel végzett tervezésnél – a méréssel meghatározott folyásgörbe – függvény formájában kell, hogy rendelkezésre álljon. Ekkor az adatbázis nem a mért pontok adathalmazát, hanem a pontokra illesztett függvény paramétereit tartalmazza.

				5.1 táblázat.
				Összehasonlító
			Hőmérséklet	alakváltozás-
Ssz.	Folyásgörbe egyenlet	Anyagminőség	tartomány	sebesség
			2	tartomány
			T[°C]	[1/s]
1./	$k - 2^{n}$	Al	-50400	
	$\kappa_f = C \cdot \lambda_{\ddot{O}}$			
		AlMgSi ötvözetek	30480	0,2516
		kis széntartalmú	301100	0,2512
		acél		
		Ni	30700	101000
		Zirkónium	30700	101000
		Inkonel ötvözet	30700	101000
		Uránium	30700	101000
		AlCu ötvözet	100600	0,2416
		18/8 CrNi acél	1000	300680
2./	$k_f = a + b \cdot \lambda_{\ddot{o}}^n$	Al	-50400	
		99.99% Al	-50400	
		Cu	30	
3./		Al	-50400	
	$k_{f} = a + (b + \lambda_{\ddot{o}})$			
		Cu	-50400	
		CuZn	-50400	
		rozsdamentes acél	30	
4./	$k_{f} = a + b \cdot \log \lambda_{\ddot{o}}$	acélok	8001100	101000
5./	-c·λ.	Al	-50400	
	$k_f = a - (a - b) \cdot e^{-b}$			
		Cu	-50400	
		CuZn	-50400	
		CuSn	-50400	
6./	$k_{f} = a + b \cdot \left(1 - e^{c \cdot \lambda_{\ddot{o}}}\right)^{n}$	Ni		
		Ni ötvözetek		
7./	$k = a + b \cdot \lambda + c \cdot e^{-\frac{d \cdot \lambda}{0}}$	kis széntartalmú		
	f ür ör	acél	2030	0,11
		rozsdamentes acél	2030	0,11
		Al	2030	0,11
		Al ötvözetek	2030	0,11

A vonatkozó irodalomból [5] számos függvénykapcsolat ismert. Ezek különböző igényességgel írják le az adott fém, vagy fémötvözet alakítási szilárdságának változását az összehasonlító alakváltozás függvényében.

A különböző fémekhez és fémötvözetekhez javasolt folyásgörbe egyenleteket, az érvényességi határukhoz tartozó hőmérséklet és összehasonlító alakváltozás-sebesség tartományt az 5.1 táblázat tartalmazza.

A folyásgörbe egyenlettel szemben az alábbi követelmények fogalmazhatók meg:

- egyszerű, a technológiai számításokban jól kezelhető képlettel írja le az összehasonlító alakváltozás ($\lambda_{\ddot{O}}$) és az alakítási szilárdság (kf) kapcsolatát,
- a folyásgörbe egyenlet paramétereinek fizikai tartalma legyen,
- a kis és nagy alakváltozások tartományában azonos pontossággal jellemezze a $k_f(\lambda_{\ddot{O}})$ kapcsolatot,
- egyformán jól alkalmazható legyen valamennyi képlékenyalakítással gazdaságosan feldolgozható fém és fémötvözet folyásgörbéjének jellemzésére.

A fenti követelmények egyidejűleg általában nem elégíthetők ki. Például az 5.1 táblázat 1. sorszámú képlete egyszerűségénél fogva előnyösen alkalmazható, paramétereinek fizikai tartalma van, de a kis alakváltozások tartományában pontatlan. Az összetettebb, kettőnél több paramétert tartalmazó folyásgörbe egyenlet a teljes alakváltozástartományban pontosan jellemzi az alakítási szilárdságot valamennyi fémnél, viszont paramétereihez fizikai tartalom általában nem köthető.

A továbbiakban a folyásgörbe paraméterek meghatározását – a legkisebb négyzetek módszerével – az 5.1 táblázat 1. és 7. sorszámú összefüggéseire mutatjuk be.

5.1 Az egyszerű hatványfüggvénnyel jellemzett kétparaméteres folyásgörbe egyenlet paramétereinek meghatározása.

A folyásgörbe meghatározására szolgáló valamely mérési eljárással (pl. hengeres próbatest zömítővizsgálatával, extrapolációs módszerrel, Watts - Ford módszerrel) mért (a lábindexben alkalmazott "mt" utal a méréssel meghatározott értékekre), összetartozó összehasonlító alakváltozás és alakítási szilárdság értékeket jelölje: $(\lambda_{ömt})_i$ és $(k_{fmt})_i$, ahol az "i" indexváltozó a mért adatpár sorszámát jelöli.

A folyásgörbe egyenlete:

$$\left(k_{f}\right)_{i} = c \cdot \left(\lambda_{\ddot{o}}\right)_{i}^{n}$$
 5.1

amelynek "c" és "n" paramétereit kívánjuk meghatározni. Logaritmizálva a hatványfüggvényt:

$$ln(k_{f})_{i} = lnc + n \cdot ln(\lambda_{\ddot{o}})_{i}$$
 5.2

a kapott összefüggés az $ln(k_f)_i - ln(\lambda_{\ddot{o}})_i$ síkon egy egyenes egyenlete, amelyet az 5.1 ábra szemléltet.

5.1. ábra.

Ugyanebben a diagramban "x" jelöli a méréssel meghatározott összetartozó $ln(k_{fmt})_i$ és $ln(\lambda_{ömt})_i$ értékeket. A feladat tehát: megkeresni a folyásgörbe "c" és "n" paramétereinek azon értékét amelyekkel az egyenes a legkisebb hibával illeszkedik a mért pontsorra. A hiba értéke az i-ik pontban:

$$H_{i} = ln(k_{f})_{i} - ln(k_{fmt})_{i}$$
 5.3

Helyettesítve $ln(k_f)_i$ értékét, kapjuk:

$$H_{i} = \left[lnc + n \cdot ln(\lambda_{omt})_{i} \right] - ln(k_{fmt})_{i}$$
 5.4

Tekintve, hogy az i-ik pontban az egyenes által reprezentált függvényérték és a mért függvényérték különbsége pozitív és negatív egyaránt lehet, ezért nem a hibaösszeg függvényt, hanem a hibanégyzetek összegfüggvényét állítjuk elő. Míg a hibaösszeg függvénynél a hibák kiolthatják egymást, addig a hibanégyzetek összegzésénél ez nem fordulhat elő.

Tehát a hibanégyzet-összeg függvény:

$$\sum_{i=1}^{N} H_{i}^{2} = \sum_{i=1}^{N} \left[lnc + n \cdot ln(\lambda_{omt})_{i} - ln(k_{fmt})_{i} \right]^{2} = \Omega(c,n)$$
 5.5

amelyet egy $\Omega(c,n)$ kétváltozós függvénynek tekintve, szélsőérték számítással a "c" és "n" azon értékei meghatározhatók, amelyeknél az egyenes a legkisebb hibával illeszkedik a mért pontsorra.

Az $\Omega(c,n)$ függvényt parciálisan deriválva "c" szerint:

Folyásgörbe.doc

$$\frac{\partial \Omega(\mathbf{c},\mathbf{n})}{\partial \mathbf{c}} = \sum_{i=1}^{N} 2 \cdot \left[\ln \mathbf{c} + \mathbf{n} \cdot \ln \left(\lambda_{\text{omt}} \right)_{i} - \ln \left(k_{\text{fmt}} \right)_{i} \right] \cdot \frac{1}{\mathbf{c}} = 0 \qquad 5.6$$

Az "i" szerinti összegzést elvégezve, majd rendezve kapjuk:

$$N \cdot lnc + n \cdot \sum_{i=1}^{N} ln(\lambda_{omt})_{i} - \sum_{i=1}^{N} ln(k_{fmt})_{i} = 0$$
 5.7

Az $\Omega(c,n)$ függvényt parciálisan deriválva "n" szerint:

$$\frac{\partial \Omega(\mathbf{c},\mathbf{n})}{\partial \mathbf{n}} = \sum_{i=1}^{N} 2 \cdot \left[\ln \mathbf{c} + \mathbf{n} \cdot \ln \left(\lambda_{\text{ömt}} \right)_{i} - \ln \left(k_{\text{fmt}} \right)_{i} \right] \cdot \ln \left(\lambda_{\text{ömt}} \right)_{i} = 0 \qquad 5.8$$

Az "i" szerinti összegzést elvégezve, majd rendezve kapjuk:

$$Inc \cdot \sum_{i=1}^{N} In(\lambda_{omt})_{i} + n \cdot \sum_{i=1}^{N} \left[In(\lambda_{omt})_{i} \right]^{2} - \sum_{i=1}^{N} \left[In(\lambda_{omt})_{i} \cdot In(k_{fmt})_{i} \right] = 0$$
5.9

Az utóbbi összefüggésből lnc-t kifejezve:

$$lnc = \frac{\sum_{i=1}^{N} \left[ln(\lambda_{ömt})_{i} \cdot ln(k_{fmt})_{i} \right] - n \cdot \sum_{i=1}^{N} \left[ln(\lambda_{ömt})_{i} \right]^{2}}{\sum_{i=1}^{N} ln(\lambda_{ömt})_{i}}$$
5.10

majd helyettesítve az 5.7 összefüggésbe:

$$N \cdot lnc + N \cdot \left\{ \sum_{i=1}^{N} \left[ln(\lambda_{omt})_{i} \cdot ln(k_{fmt})_{i} \right] - n \cdot \sum_{i=1}^{N} \left[ln(\lambda_{omt})_{i} \right]^{2} \right\} + ...$$
$$n \cdot \sum_{i=1}^{N} ln(\lambda_{omt})_{i} \cdot \sum_{i=1}^{N} ln(\lambda_{omt})_{i} - \sum_{i=1}^{N} ln(\lambda_{omt})_{i} \cdot \sum_{i=1}^{N} ln(k_{fmt})_{i} = 0 \qquad 5.11$$

"n"-re rendezve, kapjuk:

$$n = \frac{\sum_{i=1}^{N} \left[ln(\lambda_{omt})_{i} \cdot ln(k_{fmt})_{i} \right] - \frac{\left(\sum_{i=1}^{N} ln(k_{fmt})_{i}\right) \cdot \left(\sum_{i=1}^{N} ln(\lambda_{omt})_{i}\right)}{N} \\ \sum_{i=1}^{N} \left[ln(\lambda_{omt})_{i} \right]^{2} - \frac{\left[\sum_{i=1}^{N} ln(\lambda_{omt})_{i}\right]^{2}}{N}$$
5.12

A "c" szerinti deriválás után kapott összefüggésből "c"-t kifejezve:

$$\mathbf{c} = \mathbf{e}^{\begin{pmatrix} N & \ln(k_{fmt})_{i} & \sum_{i=1}^{N} \ln(\lambda_{ömt})_{i} \\ N & -n \cdot \frac{i=1}{N} \end{pmatrix}}$$
5.13

a "c" és "n" folyásgörbe paramétereket meghatároztuk.

5.2 Négyparaméteres folyásgörbe egyenlet paramétereinek meghatározása.

A folyásgörbe egyenlete:

$$\left(k_{f}\right)_{i} = a + b \cdot \left(\lambda_{\ddot{o}}\right)_{i} + c \cdot e^{d \cdot \left(\lambda_{\ddot{o}}\right)_{i}}$$
 5.14

A görbe illesztést ismét a legkisebb négyzetek módszerével kívánjuk elvégezni és a hibanégyzet-összeg minimumához tartozó "a", "b", "c" és "d" értékeket keressük. A hibanégyzet-összeg függvény:

$$F(a,b,c,d) = \sum_{i=1}^{N} \left[\left(k_{f} \right)_{i} - \left(k_{fmt} \right)_{i} \right]^{2}$$
 5.15

_

A folyásgörbe egyenletet helyettesítve:

$$F(a,b,c,d) = \sum_{i=1}^{N} \left[a + b \cdot \left(\lambda_{omt} \right)_{i} + c \cdot e^{d \cdot \left(\lambda_{omt} \right)_{i}} - \left(k_{fmt} \right)_{i} \right]^{2} \qquad 5.16$$

Parciálisan deriválva a paraméterek szerint:

$$\frac{\partial F(a,b,c,d)}{\partial a} = \sum_{i=1}^{N} 2 \cdot \left[a + b \cdot \left(\lambda_{omt} \right)_{i} + c \cdot e^{d \cdot \left(\lambda_{omt} \right)_{i}} - \left(k_{fmt} \right)_{i} \right] = 0$$
 5.17

$$\frac{\partial F(a,b,c,d)}{\partial b} = \sum_{i=1}^{N} 2 \cdot \left(a + b \cdot \left(\lambda_{omt} \right)_{i} + c \cdot e^{d \cdot \left(\lambda_{omt} \right)_{i}} - \left(k_{fmt} \right)_{i} \right) \cdot \left(\lambda_{omt} \right)_{i} = 0 \quad 5.18$$

$$\frac{\partial F(a,b,c,d)}{\partial c} = \sum_{i=1}^{N} 2 \cdot \left(a + b \cdot \left(\lambda_{ömt} \right)_{i} + c \cdot e^{d \cdot \left(\lambda_{ömt} \right)_{i}} - \left(k_{fmt} \right)_{i} \right) \cdot e^{d \cdot \left(\lambda_{ömt} \right)_{i}} = 0 \quad 5.19$$

$$\frac{\partial F(a,b,c,d)}{\partial d} = \sum_{i=1}^{N} 2 \cdot \left(a + b \cdot \left(\lambda_{omt} \right)_{i} + c \cdot e^{d \cdot \left(\lambda_{omt} \right)_{i}} - \left(k_{fmt} \right)_{i} \right) \cdot c \cdot \left(\lambda_{omt} \right)_{i} \cdot e^{d \cdot \left(\lambda_{omt} \right)_{i}} = 0$$
5.20

A szummázást elvégezve és rendezve:

$$N \cdot a + b \cdot \sum_{i=1}^{N} \left(\lambda_{\ddot{o}mt} \right)_{i} + c \cdot \sum_{i=1}^{N} e^{d \cdot \left(\lambda_{\ddot{o}mt} \right)_{i}} = \sum_{i=1}^{N} \left(k_{fmt} \right)_{i}$$
 5.21

$$\mathbf{a} \cdot \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} + \mathbf{b} \cdot \sum_{i=1}^{N} \left[\left(\lambda_{\text{ömt}} \right)_{i} \right]^{2} + \mathbf{c} \cdot \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} \cdot \mathbf{e}^{\mathbf{d} \cdot \left(\lambda_{\text{ömt}} \right)_{i}} = \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} \cdot \left(\mathbf{k}_{\text{fmt}} \right)_{i} \quad 5.22$$

$$a \cdot \sum_{i=1}^{N} e^{d \cdot (\lambda_{\ddot{o}mt})_{i}} + b \cdot \sum_{i=1}^{N} (\lambda_{\ddot{o}mt})_{i} \cdot e^{d \cdot (\lambda_{\ddot{o}mt})_{i}} + c \cdot \sum_{i=1}^{N} e^{2 \cdot d \cdot (\lambda_{\ddot{o}mt})_{i}} = \sum_{i=1}^{N} (k_{fmt})_{i} \cdot e^{d \cdot (\lambda_{\ddot{o}mt})_{i}}$$
5.23

$$\mathbf{a} \cdot \mathbf{c} \cdot \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} \cdot \mathbf{e}^{\mathbf{d} \cdot \left(\lambda_{\text{ömt}} \right)_{i}} + \mathbf{b} \cdot \mathbf{c} \cdot \sum_{i=1}^{N} \left[\left(\lambda_{\text{ömt}} \right)_{i} \right]^{2} \cdot \mathbf{e}^{\mathbf{d} \cdot \left(\lambda_{\text{ömt}} \right)_{i}} + \dots$$
$$\dots + \mathbf{c}^{2} \cdot \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} \cdot \mathbf{e}^{2 \cdot \mathbf{d} \cdot \left(\lambda_{\text{ömt}} \right)_{i}} = \mathbf{c} \cdot \sum_{i=1}^{N} \left(\lambda_{\text{ömt}} \right)_{i} \cdot \left(\mathbf{k}_{\text{fmt}} \right)_{i} \cdot \mathbf{e}^{\mathbf{d} \cdot \left(\lambda_{\text{ömt}} \right)_{i}} 5.24$$

Az így kapott négy egyenlet elvileg lehetőséget ad az a, b, c és d ismeretlen paraméterek meghatározására, azonban a nem lineáris tag miatt az egyenletrendszerből az ismeretleneket nem tudjuk zárt alakban kifejezni.

Az első három egyenlet felhasználásával az egyenletrendszert célszerű numerikusan megoldani.

Az első három egyenlet bal oldalán levő együtthatók mátrixa:

$$A = \begin{bmatrix} N & \sum_{i=1}^{N} (\lambda_{omt})_{i} & \sum_{i=1}^{N} e^{d \cdot (\lambda_{omt})_{i}} \\ \sum_{i=1}^{N} (\lambda_{omt})_{i} & \sum_{i=1}^{N} \left[(\lambda_{omt})_{i} \right]^{2} & \sum_{i=1}^{N} (\lambda_{omt})_{i} \cdot e^{d \cdot (\lambda_{omt})_{i}} \\ \sum_{i=1}^{N} e^{d \cdot (\lambda_{omt})_{i}} & \sum_{i=1}^{N} (\lambda_{omt})_{i} \cdot e^{d \cdot (\lambda_{omt})_{i}} & \sum_{i=1}^{N} e^{2 \cdot d \cdot (\lambda_{omt})_{i}} \end{bmatrix} 5.25$$

A jobboldal elemeiből felírható oszlopvektor:

$$\vec{u} = \begin{bmatrix} \sum_{i=1}^{N} (k_{fmt})_{i} \\ \sum_{i=1}^{N} (\lambda_{ömt})_{i} \cdot (k_{fmt})_{i} \\ \\ \sum_{i=1}^{N} (k_{fmt})_{i} e^{d \cdot (\lambda_{ömt})_{i}} \end{bmatrix} 5.26$$

Az "A" együttható mátrix és az \vec{u} oszlopvektor egyes elemei a mért értékekből közvetlenül számítható, míg a többi elemet a "d" függvényeként kapjuk, tehát az "A" mátrix és az \vec{u} vektor is "d" függvényének tekintendő.

$$A(d) = \begin{bmatrix} a_{00} & a_{01} & a_{02}(d) \\ a_{10} & a_{11} & a_{12}(d) \\ a_{20}(d) & a_{21}(d) & a_{22}(d) \end{bmatrix}$$

$$\vec{u}(d) = \begin{bmatrix} u_0 \\ u_1 \\ u_2(d) \end{bmatrix}$$
5.28

A 5.21 ... 5.23 egyenletrendszer

$$\vec{u}(d) = A(d) \cdot \vec{v}(d)$$
 5.29

alakban is kifejezhető, ahol $\vec{v}(d)$ az ismeretlen paraméterek oszlopvektora:

$$\vec{v}(d) = \begin{bmatrix} v_0(d) \\ v_1(d) \\ v_2(d) \end{bmatrix} = \begin{bmatrix} a(d) \\ b(d) \\ c(d) \end{bmatrix}$$
5.30

A 5.29 vektoregyenletből kifejezve az ismeretlen paraméterek oszlopvektorát:

$$\vec{v}(d) = A(d)^{-1} \cdot \vec{u}(d)$$
 5.31

ahol, $A(d)^{-1}$ az együttható mátrix reciprok mátrixa:

Folyásgörbe.doc

$$A(d)^{-1} = \begin{bmatrix} A_{00} & A_{01} & A_{02}(d) \\ A_{10} & A_{11} & A_{12}(d) \\ A_{20}(d) & A_{21}(d) & A_{22}(d) \end{bmatrix} 5.32$$

Ezzel a $\vec{v}(d)$ oszlopvektor elemei:

$$v_0(d) = a(d) = A_{00} \cdot u_0 + A_{01} \cdot u_1 + A_{02}(d) \cdot u_2(d)$$
 5.33

$$v_1(d) = b(d) = A_{10} \cdot u_0 + A_{11} \cdot u_1 + A_{12}(d) \cdot u_2(d)$$
 5.34

$$v_{2}(d) = c(d) = A_{20} \cdot u_{0} + A_{21} \cdot u_{1} + A_{22}(d) \cdot u_{2}(d)$$
 5.35

Az 5.14 egyenlet a "c" és "d" paramétereinek negatív értékei mellett felfogható egy:

$$a + b \cdot (\lambda_{\ddot{o}})_{i}$$

 $- d \cdot (\lambda_{i})$

egyenes és egy:

$$- \mathbf{c} \cdot \mathbf{e}^{- \mathbf{d} \cdot \left(\lambda_{\ddot{\mathbf{o}}}\right)_{i}}$$

exponenciális tag összegének. E megfontolást figyelembe véve a "d" független változó értékét futtatva 0-tól egy alkalmasan megválasztott "-t" értékig, \vec{v} a vektor elemeit "d" függvényeként kapjuk.

A 5.33 ... 5.35 egyenleteket a hibanégyzet-összeg függvénybe (5.16 egyenlet) helyettesítve olyan összefüggést kapunk, amely csak a "d" függvénye, vagyis egyváltozós függvényre vezettük vissza.

A feladatnak az a "d" érték lesz a megoldása, amelynél a:

$$F[a(d),b(d),c(d)] = F(d) = \sum_{1}^{N} \left[a(d) + b(d) \cdot \left(\lambda_{omt}\right)_{i} + c(d) \cdot e^{d \cdot \left(\lambda_{omt}\right)_{i}} - \left(k_{fmt}\right)_{i} \right]^{2}$$
5.36

függvénynek minimuma van (5.2 ábra).

5.2 ábra.

A minimumhoz tartozó " d_{opt} " leolvasható a felrajzolt F[a(d),b(d),c(d)] = F(d) függvény képéről, vagy numerikusan kereshető meg a szélsőérték.

Tehát:

$$\frac{\partial F[a(d),b(d),c(d)]}{\partial d} = 0$$
 5.37

egyenlet megoldása a "dopt" értékét adja.

A "d_{opt}" és a hozzá tartozó vektor elemei szolgáltatják a folyásgörbe egyenlet keresett paramétereit:

$$\vec{v}_{opt} = \begin{bmatrix} v_0 \left(d_{opt} \right) \\ v_1 \left(d_{opt} \right) \\ v_2 \left(d_{opt} \right) \end{bmatrix}$$
 5.38

ahol:

 $v_0(d_{opt}) = a$ 5.39

$$v_1(d_{opt}) = b$$
 5.40

$$v_2(d_{opt}) = c$$
 5.41

$$d_{opt} = d$$
 5.42

A regressziós egyenlet, mint matematikai modell megfelelőségének (a kapcsolat szorosságának) jellemzésére – nem lineáris regressziós egyenlet alkalmazása esetén – a korrelációs indexet célszerű alakalmazni.

$$I = + \sqrt{\frac{\sum_{1}^{i} \left[\left(k_{f}\right)_{i} - \left(k_{fmt}\right)_{i} \right]^{2}}{\sum_{1}^{i} \left[\left(k_{f}\right)_{i} - \left(k_{fmt}\right)_{\dot{a}tlag} \right]^{2}}} 5.43$$

A korrelációs index $0 \le I \le 1$ értéktartománnyal jellemzi a kapcsolat szorosságát. A korrelációs index alacsony értékeinél a kapcsolat szoros és fordítva.

6. Kidolgozott feladatok

Oldal

6.1. Folyásgörbepontok meghatározása hengeres próbatest zömítővizsgálatával	39
6.2 A mért pontsorra a $k_f = c \cdot \lambda_{\ddot{o}}^n$ alakú egyszerű hatványfüggvény "c" és	
"n"paramétereinek meghatározása a legkisebb négyzetek módszerével	41
6.3. Folyásgörbe meghatározás hengeres próbatestek zömítővizsgálatával (extrapolációs módszer)	43
6.4. Négyparaméteres folyásgörbe-egyenlet paramétereinek meghatározása	50

6.1. Folyásgörbepontok meghatározása hengeres próbatest zömítővizsgálatával

Indexváltozó kezdőértékének beállítása:	ORIGIN₌ 1
Zömítődiagramból leolvasott pontok száma:	N := 10
Indexváltozó tartományának definiálása:	i := 1N
Próbatest kiinduló magassága:	h _o := 20.35 [mm]
Próbatest kiinduló átmérője:	d ₀ := 9.95 [mm]
A próbatest zömítése során felvett zömítődiagr	am [F - Δ h] tengelyein alkalmazott léptékek:
UL – útlépték	UL := 0.104054 [mm/mm]
1 [mm] (a diagram vizszintes tengelyén) megfe próbatesten	elel 0.104054 mm magasságváltozásnak a

EL – erőlépték EL := 1075.2688 [N/mm] 1 [mm] (a diagram függőleges tengelyén) megfelel 1075.2688 [N]-nak

A zömítődiagram görbéjén felvett pontokhoz leolvasott távolságok a vízszintes (U_i) és függőleges (E_i) tengelyen:

U _i :=	[mm]	E _i :=	[mm]
11.5		30.2	
20.2		38.1	
29.3		43.7	
38.4		49.8	
47.1		55.8	
56.7		61.4	
65.4		67.4	
74		74.4	
83.6		81.8	
92.7		92.1	

A leolvasott távolságokhoz tartozó Δh_i magasságcsökkenés és F_i zömítőerő értékek:

Δ h	n _i := U _i ·UL	F _i := E _i ·EL
∆h _i	[mm]	F _i [N]
1.2		32473.1
2.1	-	40967.7
3.05		46989.2
4		53548.4
4.9		60000
5.9		66021.5
6.81		72473.1
7.7		80000
8.7		87957
9.65		99032.3
	1	

Az összetartozó összehasonlító alakváltozás és alakítási szilárdság értékek:

k

h _o - Δh _i h _o		$\lambda_{\ddot{o}_{i}} := \ln\left(\frac{h_{o}}{h_{o} - \Delta h_{i}}\right)$
k _{fi}	[N/mm ²]	λ _ö i
393.1		0.06
472.5		0.11
513.8		0.16
553.5		0.22
585.8		0.28
602.9		0.34
620.4		0.41
639.6		0.48
647.6		0.56
669.9		0.64
	$\frac{h_{0} - \Delta h_{i}}{h_{0}}$ $\frac{k_{f_{i}}}{393.1}$ $\frac{393.1}{472.5}$ 513.8 553.5 585.8 602.9 620.4 639.6 647.6 669.9	$\begin{array}{c c} h_{0} - \Delta h_{i} \\ \hline h_{0} \\ \hline \\ k_{f_{i}} \\ \hline \\ 393.1 \\ \hline \\ 472.5 \\ \hline \\ 513.8 \\ \hline \\ 553.5 \\ \hline \\ 585.8 \\ \hline \\ 602.9 \\ \hline \\ 620.4 \\ \hline \\ 639.6 \\ \hline \\ 647.6 \\ \hline \\ 669.9 \\ \hline \end{array}$

A kapott összetartozó értékeket diagramban ábrázolva a k $_{\rm f}$ - $\lambda_{\ddot{o}}$ síkon, a 6.1.1 ábrán látható pontsort kapjuk:

6.1.1. ábra

6.2. A mért pontsorra a k_f = c ($\lambda_{\ddot{0}}$)ⁿ alakú, egyszerű hatványfüggvénnyel jellemzett folyásgörbe ''c'' és ''n'' paramétereinek meghatározása a legkisebb négyzetek módszerével

A 6.1 feladatban kapott $(k_f)_i$ - $(\lambda_{\ddot{O}})_i$ pontsorra a:

 $k_{f} := c \cdot \lambda \ddot{o}^{n}$

alakú hatványfüggvényt kívánjuk illeszteni. Az "n" és "c" paramétereket a legkisebb négyzetek módszerének felhasználásával kapott 5.12 és 5.13 összefüggésekkel határozzuk meg:

$$n := \frac{\left[\sum_{i=1}^{N} \left(\ln\left(k_{f_{i}}\right) \right) \cdot \left(\ln\left(\lambda_{\ddot{o}_{i}}\right) \right) \right] - \frac{\left(\sum_{i=1}^{N} \ln\left(k_{f_{i}}\right) \right) \cdot \left(\sum_{i=1}^{N} \ln\left(\lambda_{\ddot{o}_{i}}\right) \right)}{N}}{\sum_{i=1}^{N} \left(\ln\left(\lambda_{\ddot{o}_{i}}\right) \right)^{2} - \frac{\left(\sum_{i=1}^{N} \ln\left(\lambda_{\ddot{o}_{i}}\right) \right) \cdot \left(\sum_{i=1}^{N} \ln\left(\lambda_{\ddot{o}_{i}}\right) \right)}{N}$$

n = 0.22

$$\mathbf{c} := \mathbf{e}^{\begin{bmatrix} \mathbf{N} & \mathbf{n} \begin{pmatrix} \mathbf{k} & \mathbf{f}_i \end{pmatrix} & \sum_{i = 1}^{N} & \mathbf{l} \mathbf{n} \begin{pmatrix} \lambda & \mathbf{o}_i \end{pmatrix} \\ \hline \mathbf{N} & \mathbf{n} \cdot \frac{\mathbf{i} = 1}{N} \end{bmatrix}}$$

$$c = 754.04$$
 [N/mm²]

A mért pontsort ("+" jelöli) és az illesztett egyenes képét (folytonos vonal jelöli) az $\ln(k_f)_i - \ln(\lambda_{\ddot{o}})_i$ síkon a 6.1.2 ábrán látható diagram szemlélteti:

6.1.2 ábra

A folyásgörbe mért pontjai közötti hiányzó pontokat például parabolikus interpolációval határozhatjuk meg.

A $(\lambda_{\ddot{0}})_i$ értéktartománya, melyekhez az alakítási szilárdság interpolált értékeit kívánjuk meghatározni:

$$\lambda := 0, 0.005..0.65$$

Az interpolálás bemenő adatainak oszlopvektorai:

$$v_{\mathbf{x}_{i}} \coloneqq \lambda_{\mathbf{o}_{i}} \qquad v_{\mathbf{y}_{i}} \coloneqq \mathbf{k}_{\mathbf{f}_{i}}$$

Segédfüggény a parabolikus interpolációhoz:

 k_f interpolált értékeinek meghatározása a λ tartományban:

A $(k_f)_i$ mért ("+" jelöli) és az interpolálással számított értékeit (szaggatott vonal) a 6.1.3 ábrán látható diagram szemlélteti, valamint bemutatja a fent meghatározott "c" és "n" értékek felhasználásával és a:

alakú, egyszerű hatványfüggvénnyel számított kf értékeket is (folytonos vonal).

A függvénnyel a kis alakváltozások tartományában ($\lambda_{\ddot{0}} < 0,1$) kevésbé pontosan, az ettől nagyobb értékeknél a gyakorlat számára elfogadható pontossággalszámítható a k_f alakítási szilárdság.

6.1.3 ábra

6.3 Folyásgörbe meghatározás hengeres próbatestek zömítővizsgálatával

(extrapolációs módszer)

Az index változó kezdőértékének beállítása: Próbatestek kiinduló átmérője [mm]: A próbatestek kiinduló keresztmetszete [mm²]: A $_{0} := d_{0}^{2} \cdot \frac{\pi}{4}$ $A_{0} := 78.54$ [mm²] Feltételezett súrlódási tényező: $\mu := 0.05$

Próbatest sorszáma: j := 1..5

Próbatestek kiinduló magassága [mm]-ben: ahol: (ho)_j - a j-ik próbatest kiinduló magassági mérete.

h _{oj} ≔	[mm]
19.98	
14.92	
9.99	
7.87	
4.87	

A próbatest geometriai viszonya:

$$X_{j} := \frac{u_{0}}{h_{0_{j}}} \qquad X_{j}$$

$$0.5$$

$$0.67$$

$$1$$

$$1.27$$

$$2.05$$

ahol: X_j - a j-ik próbatest geometriai viszonya A felvett összehasonlító alakváltozások sorszáma: i = 1..5 A felvett ($\lambda_{\ddot{O}}$)_i összehasonlító alakváltozások:

^λ ö _i	:=
0.2	
0.4	
0.6	
0.7	
0.85	

A $(\lambda_{\ddot{O}})_{i}$ értékekhez tartozó próbatest magasságok [mm]-ben:

$$h = \begin{bmatrix} 16.36 & 12.22 & 8.18 & 6.44 & 3.99 \\ 13.39 & 10 & 6.7 & 5.28 & 3.26 \\ 10.97 & 8.19 & 5.48 & 4.32 & 2.67 \\ 9.92 & 7.41 & 4.96 & 3.91 & 2.42 \\ 8.54 & 6.38 & 4.27 & 3.36 & 2.08 \end{bmatrix}$$
[mm]

ahol: $h_{ij} = a j$ -ik próbatest, i-ik összehasonlító alakváltozáshoz tartozó magassága [mm]-ben.

A $(\lambda_{\ddot{o}})_{\dot{i}}$ értékekhez tartozó próbatest keresztmetszetek [mm²]-ben:

А

$$A_{i} := A_{0} \cdot e^{\lambda_{0}} A_{i}$$

$$A = \begin{bmatrix} 95.93 \\ 117.17 \\ 143.11 \\ 158.16 \\ 183.76 \end{bmatrix} [mm^{2}]$$

 A_i - valamely próbatest i-ik összehasonlító alakváltozáshoz tartozó keresztmetszete $[mm^2]\mbox{-}ben$

A $(\lambda_{\ddot{0}})_{i}$ értékekhez tartozó próbatest magasságcsökkenések [mm]-ben:

$$\Delta h_{i,j} := h_{0j} - h_{i,j}$$

$$\Delta h = \begin{bmatrix} 3.62 & 2.7 & 1.81 & 1.43 & 0.88 \\ 6.59 & 4.92 & 3.29 & 2.59 & 1.61 \\ 9.01 & 6.73 & 4.51 & 3.55 & 2.2 \\ 10.06 & 7.51 & 5.03 & 3.96 & 2.45 \\ 11.44 & 8.54 & 5.72 & 4.51 & 2.79 \end{bmatrix} \text{ [mm]}$$

 $\Delta h_{ij} = a j$ -ik próbatest, i-ik összehasonlító alakváltozáshoz tartozó magasságcsökkenése [mm]-ben.

L1 - az 1-es útlépték L1 := 0.104054 [mm/mm] 1mm (a diagramon) megfelel 0.104054 mm magasságváltozásnak a próbatesten.

L2 - a 2-es útlépték L2 := 0.0416216 [mm/mm] 1mm (a diagramon) megfelel 0.0416216 mm magasságváltozásnak a próbatesten.

 l_{ij} - a j-ik próbatest i-ik összehasonlító alakváltozásához a regisztrátumon az origótól felmérendő távolság mm-ben, amelynél az F_{ij} erőérték leolvasandó.

$$\begin{split} I_{i,1} &:= \frac{1}{L1} \cdot \Delta h_{i,1} & I_{i,2} &:= \frac{1}{L1} \cdot \Delta h_{i,2} & I_{i,3} &:= \frac{1}{L2} \cdot \Delta h_{i,3} \\ I_{i,4} &:= \frac{1}{L2} \cdot \Delta h_{i,4} & I_{i,5} &:= \frac{1}{L2} \cdot \Delta h_{i,5} \\ I_{i,1} & [mm] & I_{i,2} & [mm] & I_{i,3} & [mm] & I_{i,4} & [mm] & I_{i,5} & [mm] \\ \end{split}$$

34.81	25.99	43.51	34.28	21.21
63.3	47.27	79.13	62.34	38.57
86.64	64.69	108.29	85.31	52.79
96.66	72.18	120.83	95.19	58.9
109.95	82.1	137.43	108.27	67

A próbatestek zömítése során felvett erő-út diagrammokról (lásd: 6.3.1 ábra) a Δh_{ij} magasságokhoz tartozó F_{ij} zömítőerő értékek [mm]-ben:

K _{i,1} :=	[mm] K _{i,2} :	= K _{i,3}	:= K _{i,4}	= K _{i,5}	:= [mm]
46.5	46.5	47	49	50	
66	66	69	72	75	
86	88	94	100	108	
99	101	110	118	130	
122	126	141	153	175	

EL – erőlépték EL := 1075.2688 [N/mm] A diagram 1 mm-e megfelel 1075.2688 [N]-nak

A leolvasott távolságokhoz tartozó erőértékek [N]-ban az erőlépték ismeretében

$$F_{i,j} := EL \cdot K_{i,j}$$

A próbatestek zömítése során felvett erő-út diagrammokról (lásd: 6.3.1 ábra) a Δh_{ij} magasságokhoz tartozó F_{ij} zömítőerő értékek [N]-ban:

	50000	50000	50537.63	52688.17	53763.44	
	70967.74	70967.74	74193.55	77419.35	80645.16	
F =	92473.12	94623.65	101075.27	107526.88	116129.03	[N]
	106451.61	108602.15	118279.57	126881.72	139784.94	
	131182.79	135483.87	151612.9	164516.13	188172.04	

6.3.1 ábra

A Δh_{ij} értékekhez tartozó átlagos felületi nyomások [N/mm²]-ben:

$$\mathsf{p}_{i,j} := \frac{\mathsf{F}_{i,j}}{\mathsf{A}_i}$$

$$p = \begin{bmatrix} 521.22 & 521.22 & 526.82 & 549.24 & 560.45 \\ 605.69 & 605.69 & 633.23 & 660.76 & 688.29 \\ 646.17 & 661.2 & 706.28 & 751.36 & 811.47 \\ 673.06 & 686.66 & 747.85 & 802.24 & 883.82 \\ 713.9 & 737.31 & 825.08 & 895.3 & 1024.04 \end{bmatrix}$$
 [N/mm²]

ahol: p_{ij} = a j-ik próbatest véglapjain, az i-ik összehasonlító alakváltozáshoz tartozó átlagos felületi nyomás [N/mm²]-ben.

A p_{ij} átlagnyomások az $X_j=d_0/(h_0)_j$ függvényében (6.3.2 ábra):

A $(\lambda_{\ddot{O}})_{i}$ =állandó értékekhez tartozó pontsorokra regressziós egyenes illesztése a legkisebb négyzetek módszerével:

Jelölések:

b(i)=intercept(X,Y) - az egyenes függőleges tengellyel alkotott metszészpontja, m(i)=slope(X,Y) - az illesztett egyenes meredeksége

$\begin{array}{l} Y1_{j} \coloneqq p_{1,j} \\ b1 \coloneqq intercept(X,Y1) \\ b1 = 505.08 \\ m1 \coloneqq slope(X,Y1) \\ y1(x) \coloneqq b1 + m1 \cdot x \\ m1 = 27.94 \end{array}$	$\begin{array}{l} Y2_{j} \coloneqq p_{2,j} \\ b2 \coloneqq intercept(X,Y2) \\ b2 = 575.7 \\ m2 \coloneqq slope(X,Y2) \\ y2(x) \coloneqq b2 + m2 \cdot x \\ m2 = 57.34 \end{array}$
Y3 _j := $p_{3,j}$	Y4 _j := p _{4,j}
b3 := intercept(X,Y3)	b4 := intercept(X,Y4)
b3 = 594.9	b4 = 603.95
m4 := slope(X,Y4)	m3 := slope(X,Y3)
y4(x) := b4 + m4·x	y3(x) := b3 + m3·x
m3 = 109.54	m4 = 140.82
Y5 _j := p _{5,j}	m5 := slope(X,Y5)
b5 := intercept(X ,Y5)	y5(x) := b5 + m5·x

b5 = 613.61

$$m5 = 205.17$$

A függőleges tengely és az illesztett egyenesek alkotta metszéspontokhoz tartozó alakítási szilárdság értékek [N/mm²]-ben:

k _{fi} ≔	k _{f.}	[N/mm ²]
b1	505.1	
b2	575.7	
b3	594.9	
D4	603.9	
	613.6	

A mért pontsorok és az illesztett egyenesek szemléltetése (6.3.3 ábra):

A $d_0/h_0=0$ értékhez tartozó alakítási szilárdságokat a $(\lambda_{\ddot{0}})_i$ függvényében ábrázolva a keresett folyásgörbéhez jutunk (6.3.4 ábra):

A köztes hiányzó pontokat például köbös interpolációval határozhatjuk meg

$$\begin{split} \lambda &\coloneqq 0\,, 0.05\,..\,0.85 \\ vx_i &\coloneqq \lambda \, \ddot{o}_i \qquad vy_i &\coloneqq k \, f_i \\ vs &\coloneqq cspline(\,vx,vy) \\ k \, f.interpolalt\!(\lambda) &\coloneqq interp(\,vs\,,vx\,,vy\,,\lambda) \end{split}$$

A mért diszkrét pontsort, illetve az interpolált k $_{\rm f}$ értékek görbéjét a 6.3.5 ábra szemlélteti:

6.4 Négyparaméteres folyásgörbe egyenlet paramétereinek meghatározása

Anyagminőség: C10

A mért folyásgörbe pontok száma: N = 10

Az összetartozó $(k_f)_i$ - $(\lambda_{\ddot{0}})_i$ értékek bevitele: Az indexváltozó tartománya: i = 0.. N – 1

λ _ö :=	k _{fi} ≔	[N/mm ²]
0.061	393.1	
0.109	472.5	
0.162	513.8	
0.219	553.5	
0.276	585.8	
0.342	602.9	
0.407	620.4	
0.475	639.6	
0.558	647.6	
0.642	669.9	

A mért pontpárok ábrázolása a k_{f} - $\lambda_{\ddot{O}}$ síkon (6.4.1 ábra):

6.4.1 ábra

Az "A" mátrix "d"-től nem függő elemeinek számítása:

 $a_{00} \coloneqq N \qquad \qquad a_{01} \coloneqq \sum_{i} \lambda_{\vec{o}_{i}} \qquad a_{11} \coloneqq \sum_{i} \left(\lambda_{\vec{o}_{i}}\right)^{2}$

$$a_{00} = 10$$
 $a_{01} = 3.251$ $a_{11} = 1.398$

Az "u" vektor "d"-tõl nem függő elemeinek számítása:

$$u_{0} := \sum_{i} k_{f_{i}}$$

 $u_{1} := \sum_{i} (\lambda_{0} \cdot k_{f_{i}})$
 $u_{0} = 5.699 \cdot 10^{3}$
 $u_{1} = 1.996 \cdot 10^{3}$

A "d" paraméter futtatása: d := -12,-11.9..-2 Az "A" mátrix "d"-től függő elemeinek számítása:

$$a_{22}(d) := \sum_{i} e^{2 \cdot d \cdot \lambda} \frac{\sigma_{i}}{\sigma_{i}} \qquad a_{02}(d) := \sum_{i} e^{d \cdot \lambda} \frac{\sigma_{i}}{\sigma_{i}} \qquad a_{12}(d) := \sum_{i} \left(e^{d \cdot \lambda} \frac{\sigma_{i}}{\sigma_{i}} \cdot \lambda \frac{\sigma_{i}}{\sigma_{i}} \right)$$

Az "u" vektor "d"-tõl függő elemeinek számítása:

$$u_2(d) := \sum_i \left(k_{f_i} e^{d \cdot \lambda_{\vec{o}_i}} \right)$$

Az "A" mátrix és az "u" vektor a "d" függvényében:

$$A(d) := \begin{bmatrix} a_{00} & a_{01} & a_{02}(d) \\ a_{01} & a_{11} & a_{12}(d) \\ a_{02}(d) & a_{12}(d) & a_{22}(d) \end{bmatrix} \qquad u(d) := \begin{bmatrix} u_0 \\ u_1 \\ u_2(d) \end{bmatrix}$$

A "v" megoldásvektor a "d" függvényében:

$$v(d) := A(d)^{-1} \cdot u(d)$$

A hibanégyzet-összeg függvény a "d" függvényében:

$$F(d) := \sum_{i} \left[\left(v(d)_{0} + v(d)_{1} \cdot \lambda_{\ddot{o}_{i}} + v(d)_{2} \cdot e^{d \cdot \lambda_{\ddot{o}_{i}}} - k_{f_{i}} \right)^{2} \right]$$

Grafikusan ábrázolva az F(d) függvényt, a minimumhely környezetében (6.4.2 ábra):

a minimumhoz tartozó d_{opt} értéke numerikusan megkereshető, amelyet az alábbi programmal végzünk:

dd := 0.1

$$d_{OPT}(F, dd, d) := \begin{cases} FF \leftarrow F(d + dd) \\ while & FF < F(d) \\ d \leftarrow d + dd \\ FF \leftarrow F(d + dd) \\ d \end{cases}$$

$$d_{opt} := d_{OPT}(F, dd, -9.5)$$

$$d_{opt} = -9.5$$

$$a := v(d_{opt})_{0} \qquad b := v(d_{opt})_{1} \qquad c := v(d_{opt})_{2} \qquad d := d_{opt}$$

$$a = 555.512 \qquad b = 176.349 \qquad c = -305.508$$

A mért pontok ("+" jelöli)és a négyparaméteres függvénnyel számított folyásgörbe diagramja, tehát az illesztett görbe (folytonos vonal) a 6.4.3 ábrán látható:

$$\lambda = 0,.01..0.642$$

^k f.illesztett(
$$\lambda$$
) := a + b· λ + c·e^{d· λ}

6.4.3 ábra

7. Mellékletek

7.1. Képlékeny hidegalakítással gazdaságosan feldolgozható fémek folyásgörbéi	. 54
7.2 A $k_f = c \cdot \lambda_{\ddot{o}}^n$ alakú egyszerű hatványfüggvénnyel felírt folyásgörbe egyenlet "c" és "n"paramétereinek értékei néhány anyagminőségre	. 56
7.3. A k _f = a + b · $\lambda_{\ddot{o}}$ + c · e ^{d·$\lambda_{\ddot{o}}$} alakú négyparaméteres folyásgörbe egyenlet "a", "b", "c" és "d" paramétereinek értékei néhány anyagminőségre	. 57
7.4. A Hajduk-féle $k_f = k_{f(a)} \cdot A_1 \cdot e^{-m_1 \cdot T} \cdot A_2 \cdot \lambda_{\ddot{o}}^{m_2} \cdot A_3 \cdot \dot{\lambda}_{\ddot{o}}^{m_3}$ alakú	

7.1. Képlékeny hidegalakítással gazdaságosan feldolgozható fémek folyásgörbéi [4]

7.1.1 ábra. Kis széntartalmú acélok folyásgörbéi

7.1.2 ábra. Ötvözött acélok folyásgörbéi

7.1.3 ábra. Ötvözetlen és ötvözött aluminium folyásgörbéi

7.1.4 ábra. Réz és rézötvözetek folyásgörbéi

7.2 A $k_f = c \cdot \lambda_{\ddot{o}}^n$ alakú egyszerű hatványfüggvénnyel felírt folyásgörbe egyenlet "c" és "n" paramétereinek értékei néhány anyagminőségre

A táblázatban szereplő "m" a $k_f = k_{f(a)} \cdot \left(\frac{\dot{\lambda}_{\ddot{o}}}{\dot{\lambda}_{\ddot{o}(a)}}\right)^m$ Alder - Phillips formula sebességkitevő értékei, ahol $\dot{\lambda}_{\ddot{o}(a)} = 1[1/s]$

Anvagminőség	с	n	m	kfo	
	[N/mm ²]			$[N/mm^2]$	
Szénacélok					
C10 MSZ 31-85	683,51	0,2350	0,0222	186,4	
C15 MSZ 31-85	724,02	0,2650	0,011	206,0	
C25 MSZ 61-85	764,76	0,2352	0,0046	264,9	
C35 MSZ 61-85	892,2	0,244	0,0078	282,5	
C45 MSZ 61-85	939,63	0,1964	0,0053	353,2	
Gyengén ötvözött acélok					
BC3 MSZ 31-81	915.86	0,204	0,0284	290,4	
Cr1 MSZ 61-85	891,92	0,1814	0,0102	327,7	
Cr2 MSZ 61-85	958,74	0,217	0,0171	332,6	
CrV3 MSZ 61-85	1062,82	0,1644	0,0143	416.9	
CMO3 MSZ 61-85	903,78	0,1928	0,00038	462,1	
CMO4 MSZ 61-85	1028,54	0,131	0,0178	476,8	
GO3 MSZ 17789	1064,86	0,177	0,014	399,3	
Korrózióálló acél					
KO13 MSZ 3460	1423,99	0,148		492,5	
Alumínium és ötvözetei					
A199,5 MSZ 3745	145,63	0,1995	0,0069	31,4	
AlMgSi MSZ 3714/1	182,12	0,281	0,0168	31,4	
AlMgSi1 MSZ 3714/1	222,89	0,142	0,0076	71,1	
AlMg1Si1 MSZ 3714/1	229,94	0,166	0,0099	71,3	
AlMg3 MSZ 3714/1	414,98	0,2245	0,0176	139,3	
AlCuMg1 MSZ 3714/1	337,87	0,187	0,0096	110,9	
AlCuMg2 MSZ 3714/1	336,15	0,155	0,0097	147,2	
AlZnMgTi MSZ 3714/1	335,98	0,133	0,0028	150,1	
Réz és ötvözetei					
CuE MSZ 64/1	364,71	0,270	0,012	82,4	
CuZn28 MSZ 770/1	614,80	0,335	0,0094	104,0	
CuZn37 MSZ 770/1	642,63	0,220	0,001	120,7	

	d·λ				
7.3 A $k_f = a + 1$	$b \cdot \lambda_{\ddot{o}} + c \cdot e^{-o}$	alakú	négyparaméteres	folyásgörbe	egyenlet
"a", "b", "c", és "	d'' paramétereinek	értékei	néhány anyagmine	őségre	

Anyagminõség	а	b	c	d	
Szénacélok					
C10 MSZ 31-85	565,047	117,07	-338,431	-5,15	
C15 MSZ 31-85	578,582	133,209	-378,731	-7,20	
C25 MSZ 61-85	619,118	130,264	-365,824	-7,40	
C35 MSZ 61-85	679,416	193,139	-405,933	-8,70	
C45 MSZ 61-85	748,07	170,33	-400,421	-9,90	
Gyengén ötvözött acélok					
BC3 MSZ 61-85	687,753	206,6	-396,749	-14,1	
Cr1 MSZ 61-85	666,745	212,059	-323,844	-12,7	
Cr2 MSZ 61-85	718,0	204,465	394,052	-11,0	
CrV3 MSZ 61-85	813,868	236,087	-381,059	-12,3	
CMO3 MSZ 61-85	679,804	222,342	-233,089	-6,15	
CMO4 MSZ 61-85	821,714	196,308	-342,33	-21,1	
GO3 MSZ 17789	846,303	846,303 183,283		-12,8	
Korrózióálló acél					
KO13 MSZ4360	1103,293	257,798	-605,626	-30,25	
Alumínium és ötvözetei					
A199,5 MSZ 3745	114,984	30,716	-74,803	-8,706	
AlMgSi MSZ 3714/1	127,137	47,621	-85,393	-6,30	
AlMgSi1 MSZ 3714/1	176,208	35,467	-103,477	-31,10	
AlMg1Si1 MSZ 3714/1	177,965	40,126	-102,436	-24,15	
AlMg3 MSZ 3714/1	324,715	77,183	-191,848	-9,95	
AlCuMg1 MSZ 3714/1	301,97	26,311	-199,026	-13,15	
AlCuMg2 MSZ 3714/1	285,839	45,148	-136,304	-9,95	
AlZnMgTi MSZ 3714/1	307,565	26,649	-156,749	-13,15	
Réz és ötvözetei					
CuE MSZ 64/1	341,695	32,829	-254,511	-5,32	
CuZn28 MSZ770/1	593,484	60,165	-467,101	-3,35	
CuZn37 MSZ 770/1	674,384	54,654	-552,689	-3,00	

7.4.	A	Hajduk-féle	$k_{f} = k_{f(a)} \cdot A_{1}$	_m ∙T ∙e ¹ ∙	$A_2 \cdot \lambda_{\ddot{o}}^{m_2}$	∙ A ₃ ∙ λ ^m 3 ö	alakú	folyásgörbe
------	---	-------------	--------------------------------	----------------------------	--------------------------------------	--	-------	-------------

1 4	· · · ·	/ //1 .	/1 /	• // /
egvenlet	narametereinek	: ertekei	nehanv	anvagmindsegre
egyemet	par anne ter enner	I UI UUNUI	nenany	anyagiinnosegie

Anyag	k _{f(a)} [N/mm ²]	A ₁	m_1	A ₂	m ₂	A ₃	m3
C10	98.2	12.231	0.0025	1.494	0.174	0.726	0.139
C15	98.0		.,	-,.,		-,	
C35	143,0						
C45	115,7						
C60	121,6	11,657	0,00247	1,435	0,155	0,703	0,153
S82	110,3		·	·			
S131	110,0						
KL3	135,5	18,170	0,00280	1,516	0,181	0,750	0,124
BC3	120,6	14,586	0,00268	1,629	0,212	0,726	0,139
BCMo2	134,7	,	,	,	,	,	,
CMo3	106,2	13,235	0,00258	1,532	0,186	0,761	0,118
NCMo5	144,9		·	·			
Cr3	112,3						
CrV3	141,2						
W5	150,3						
K4	132,3	12,538	0,00253	1,309	0,117	0,750	0,125
W9	146,5						
W7	300,8						
KO2	125,4	16,540	0,00281	1,393	0,144	0,786	0,105
KO11	147,8						
KO16	186,7						
KO13	136,7						
KO14	188,6						
H12	117,4	19,946	0,00299	1,177	0,071	0,732	0,135
H13	127,5						
H14	135,8						
A199,5	38,0	4,867	0,00396	1,490	0,173	0,775	0,111
A199	43,0						
AlMn	49,1						
AlMn1	47,1						
AlMg3	107,1	5,114	0,00429	1,134	0,055	0,815	0,089
AlMg5	160,7						
AlMgMn	103,6						
AlMgSi1	67,2						
E-Cu99,9	63,5	12,438	0,00317	1,631	0,213	0,813	0,090
Cu99	68,2						
CuZn42	39,2	44,600	0,00547	1,039	0,017	0,710	0,149
CuZn37	87,2						
CuZn28	97,0						

Felhasznált irodalom:

- [1] dr.Horváth L.: Képlékenyalakító technológiák elméleti alapjai BMF jegyzet
- [2] dr.Horváth L.: Képlékenyalakítási alapfeladatok elemzése a képlékenységtan módszereivel BMF jegyzet
- [3] Dr.Artinger I. Bauer F. Dr.Ziaja: Hegesztéstechnológia, hőkezelés, képlékeny alakítás Gyakorlati jegyzet Tankönyvkiadó, Bp.1972
- [4] Szabványgyűjtemények 52. kötet. Hidegalakító és térformázó szerszámok Szabványkiadó, Bp. 1986
- [5] Metals Handbook, Forming and Forging ASM International, OHIO, 1988