Óbuda University Bánki Donát Faculty of		Department of Materials Technology		
Mechanical and Safety Engineering				
Lecture name and Neptun code: Materials BAXAI1ABNE Credits: 4				
Course type: Full-time				
Bachelor course: Technical Management				
Lecturer: Dr. Kovács Tünde associate professor				
Number of sessions/week/term: weekly	Lecture: 1	Practise: 2		
Exam/ course assignment: Exam	Lang	uage: English		
Course objective				

General overview and classification of engineering materials. Mechanical properties of metals, polymers, ceramics and composites. Mechanical materials testing. Tensile test, hardness test, impact test. Creep and fatigue of metals. Non-destructive testing. Investigation methods for determining the chemical composition and submicroscopic structure of materials. Structure of materials.

Week	Semester program (Lecture and Practise)	
1.	Introduction, Structure of the materials.	
2.	Material testing. Destructive and nondestructive testing.	
3.	Metals and alloys. Properties and applications of the metals and alloys.	
4.	Metal manufacturing processes.	
5.	Polimers and polimer technologies, application of the polimers.	
6.	Ceramics and composites	
7.	1. ZH	
8.	Bio and biocompatible materials.	
9.	Damage of the materials	
10.	Aspects of the material selections	
11.	Administration of the quality of the materials.	
12.	Summing the semester program.	
13.	2. ZH	
14.	Consultation	

Semester week	Test
7.	First test
13.	Second test

Course assessments:

Week No. 7 and week No.13 tests in writing. You can go to take an exam if you can fulfil the requirements of the tests in writing in the 7th and 13th weeks (both tests needs to be minimum pass mark) and you participate in lecture and practice classes. The term is not successful the lack of above requirements. Evaluation happens by scoring. The tasks are theoretical and practical.

Intervals of the grade:

under 50%: 1 (unsatisfying, gig)

50-62,5 %: 2 (pass mark)

62,5-75 %: 3 (satisfactory mark)

75-87,5 % 4 (class)

87,5-100% 5 (excellence)

The exam will be in the exam period in writing. Instead of the writing exam, the results of the average tests is acceptable over 75%.

The method of the supplement: You can take an improver exam only one time set out by tutor in the first 10 days of the exam period with the payment of examination fee. This is the writing exam with the whole curriculum. Examination method is writing.

Compulsory literature		
1) Askeland, D.R Fulay, P. P., Wright, W. J.: The Science and Engineering of Materials, Stamford, 201		
2) Ashby, Jones: Engineering Materials 1, Butterworth-Heinemann, Oxford, 2012.		
3) Ashby, Jones: Engineering Materials 2, Butterworth-Heinemann, Oxford, 2012.		
4) Callister: Materials Science and Engineering, John Wiley & Sons, New York, 2007.		
5) Smallman, R. E., Ngan, A. H.W.: Physical Metallurgy and Advanced Materials, Elsevier, 2007		
6) Verebély-Dévényi, J., Rácz, P.: Engineering materials, Óbuda University, 2012.		

Budapest, 2020.08.30.

Dr Kovács Tünde Lecture