Óbuda University				Institute of Materials and Manufacturing Science				
Bánki Faculty of Mechanical and Safety Engineering								
Subject title and code: Finite element modeling of materials technologies (Anyagtechnológiák végeselemes								
modellezése) BAKTNAMBNE								
Credits: 2								
Full time course, 2017/2018/II								
Available for: Mechanical engineering BSC, CAD/CAM specialization								
Mechatronics MSc (English)								
Responsible:	dr. Gonda	a Viktor Instructor: dr. Gonda Viktor						
Prerequisite		-						
	-					-		
Weekly classes:	Lecture	: 0	Seminar: 0		Laboratory: 2	Consultation: upon		
						request		
Evaluation (s,v,f): f	Continu	Continuous						
Curriculum								
Aim of the course: In the analysis of materials technologies, finite element modeling is beneficial for the								
determination of stress, strain and temperature distributions, and other technological parameters for complex								
geometries. By using the MARC finite element software, mechanical, thermal, coupled thermo-mechanical								
sample problems will be solved. After finishing the course, the student will be able to define a simplified								
mechanical and/or thermal model for forming or heat treatment, implement it in finite element, run the model, and								
post process the results, serving as an initial step for further optimizing a solution for more complex problems.								
Content of the course: The MARC work environment. Solving an elastic problem. Setting up plasticity: yield								
condition, and material model. Modeling upsetting and extrusion. Solutions for sheet metal forming problems.								
Thermal model and boundary conditions. Construction of a coupled thermo-mechanical problem. Mesh								
refinement, and automatic re-mesh. Importing a CAD geometry. Automatic parameter analysis with macros.								

1. Schedule								
Acad.	Торіс							
week								
1.	Setting up the environment. Elastic problem I: pre-processing							
2.	Elastic problem II: submission, post-processing							
3.	Plastic problem: properties for plasticity, submission, post-processing.							
4.	Assignments.							
5.	Solving upsetting I: definition of axisymmetric geometry, mechanical properties, submission, post-processing.							
6.	Tube flaring. Extrusion base example.							
7.	Thermal base examples: modeling conduction and convection.							
8.	Solving upsetting II: remesh, assignment of thermal properties, submission of coupled problem, post-processing.							
9.	Generalized press forming problem, import from CAD.							
10.	Solving deep drawing, examining formability.							
11.	Definition of parametric problems. Automatic submission and pre-processing.							
12.	Assignment report deadline.							
13.	Consultation.							
14.	Retake.							

2. References

- Marc User's Guide, MSC Software, 2017.
 MARC Vol. A-E, MSC Software, 2017.
 Henry S. Valberg: Applied metal forming, Cambridge University Press, 2010.

3. Requirements						
a)	Presence: compulsory.					
b)	Tests					
Acad	emic week	task				
	12.	assignment report deadline				
c)	c) Conditions for signature					
	Absence less than 30%.					
	Accepted assignment.					
d)	d) Final mark					
	Based on the report.					
e)	e) Supplement for absence					
	If justified, supplement with written test.					
f)	Examination					
	-					
g)	Pre-examination					
Ċ,	-					
h)	Retake in ex	am period				
,	Resubmission of the report until the end of the second examination week.					
Budape	st, 2018. Febr	uary 12. Dr. Gonda Viktor, associate professor				